Development of low-temperature high-activity nanocatalyst with periodic aggregation using a non-equilibrium process
Project/Area Number |
21K04763
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 27020:Chemical reaction and process system engineering-related
|
Research Institution | Tohoku University |
Principal Investigator |
成 基明 東北大学, 未来科学技術共同研究センター, 特任助教 (30747259)
|
Co-Investigator(Kenkyū-buntansha) |
庄司 衛太 東北大学, 工学研究科, 准教授 (20780430)
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Project Status |
Discontinued (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | mesocrystal / CeO2 / substitution / periodic / catalyst / doping / nano / non-equilibrium / nanocatalyst / low temperature / supercritical |
Outline of Research at the Start |
The sub-nano or atomic level size control can maximize the performance of materials that have never been shown. However, since several nano-sized particles have very high surface energy, they reveal a severe problem in terms of stability. Therefore, this application aims to simultaneously pursue high activity and stability in a manner that induces periodic aggregation while controlling particles size down to sub-nanometers. Analyzing the aggregation phenomenon using scientific calculation, nonocatalyst can be designed supported by a non-equilibrium process with supercritical technology.
|
Outline of Annual Research Achievements |
グリーンハウスガスを低減しながらも産業を維持するためには、低温で運転できる活性の高い触媒が必須不可欠である 世界的な地球温暖化現象に対応する炭素中立型触媒の開発は緊急である。CeO2系触媒は酸化還元能力が非常に優れており、様々な分野で触媒として使用されている。CeO2のナノサイズ化、特定漏出面の制御、金属ドーピング、置換などを通じると、その性能が非常に向上する。 本研究では、活性の高いナノ触媒の開発および使用において非常に重要な要素である熱安定性について、周期構造形成の有無による違いを綿密に分析して触媒活性に及ぼす影響について研究している。本年度では前年度で実験的に得られた結果の分析、シミュレーションを中心に実施した。メソクリスタルの形成過程のシミュレーションは非常に複雑なため、まずはクロム置換セリアの構造の安定化に関 して分子動力学シミュレーションを利用、非晶質状態から結晶化過程をシミュレーション、粒子のエネルギー変化を調べ、最適クロム置換モル分率について評価した。CeO2自体もCe3+が生成して酸素欠損が発生するとエネルギー的に非常に大きな変化が生じるので、Ce3+の数を増やしながら量論的に酸素を除去してシミュレーションした後、excess gibbs free energyの変化を調べた。その後、Cr3+に置き換えるか、Ce3+とCr3+を同時に投入しシミュレーションして結果を得た。シミュレーション結果Ce3+を置換したときはCe3+が50%、Cr3+を置換したときはCr3+が20%、Ce3+とCr3+を1:1.5比で置換したときはCr3+が25%でそれぞれ安定化される特性を示した。これは、実験的に得られたCr3+のモル比に近い結果から、このアプローチの妥当性が検証された。
|
Report
(2 results)
Research Products
(13 results)