Project/Area Number |
21K04815
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 28010:Nanometer-scale chemistry-related
|
Research Institution | Tokyo University of Agriculture and Technology (2023) Institute of Physical and Chemical Research (2021) |
Principal Investigator |
Bisri Satria 東京農工大学, 工学(系)研究科(研究院), 准教授 (70748904)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | colloidal quantum dots / supercapacitors / nanopores / energy devices / electric double layer / nanocrystals / hierarchical assemblies / electronic transport / electric-double-layer / electrochemical devices / energy storage / quantum capacitance / supercapacitor |
Outline of Research at the Start |
Nanostructuring the electrode materials and their functionalizations are the keys to advance the development of supercapacitors in addition to optimizing the combination between the electrodes and the used electrolytes. We realize that controlling the nanomaterials' size and assemblies is the best approach to develop a high-performance supercapacitor. We will achieve a hierarchical porous structure and use the extraordinarily large surface-area-to-volume ratio. We should exploit the nanomaterials' quantum-size-effect to significantly enhance the EDL supercapacitor's capacitance.
|
Outline of Final Research Achievements |
This research project demonstrates the prospects of utilizing assemblies of colloidal quantum dot (QD) materials as the building blocks of high-performance supercapacitor devices. Through precise assembly engineering of the colloidal QDs, the formation of hierarchical nanoporous thin film can be established and scrutinized. The use of these QD hierarchical nanopores as micro-supercapacitor electrodes demonstrates high performance energy storage capabilities comparable to the current state-of-the-art supercapacitor materials. Within this project, comprehensive investigations of the charge carrier transport in various kinds of colloidal QD assemblies were performed, providing clues to further enhance the performance of supercapacitor devices based on this class of this materials. Furthermore, the search of new, environmentally-friendly, abundant, and lighter colloidal QD compounds is also pioneered by computational studies and the synthesis of the other metal-chalcogenide nanocrystals.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、コロイド状量子ドット(QD)をスーパーキャパシタの構成要素として用いることで、高い出力密度とエネルギー密度を大幅に実現できることを示している。この研究成果は、電化によるゼロ・カーボン社会の実現に不可欠な主要エネルギー貯蔵デバイスの1つである高性能スーパーキャパシタの将来的な開発の基礎を築くものである。学術的には、この概念実証研究は、他の多くのQD化合物のさらなる探求を刺激し、エネルギー貯蔵材料としての潜在的利用を最大化するためにそれらの集合体を制御する。また、量子閉じ込め系を利用したエネルギー貯蔵材料としての可能性を探る第一歩でもある。
|