Project/Area Number |
21K04823
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 28030:Nanomaterials-related
|
Research Institution | Hokkaido University |
Principal Investigator |
Zhangh Lihua 北海道大学, 工学研究院, 准教授 (60719714)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | ナノ酸化物 / 水中結晶光合成 / ラジカル反応 / 活性酸素種 / 光機能性 / metal oxide / submerged photosynthesis / hydrogen peroxide / radical reactions / nano structure / electrochemistry / metal oxides / photofunction / copper / molybdenum / tungsten / 金属酸化物 / 光機能 |
Outline of Research at the Start |
本研究では、生体内反応や触媒研究分野などで限定的に知られてきた水のラジカル反応を積極的に利用し、光照射、活性酸素種、超音波照射など水中フリーラジカル生成手法を組み合わせ、新たな金属酸化物ナノ構造の創製法を提案する。これにより、従来不可能であった金属原料から直接金属酸化物ナノ構造の作製を行い、光電子デバイスへの応用性を評価する。
|
Outline of Final Research Achievements |
In this study, we proposed a new method for the fabrication of nanomaterials by actively utilizing radical reactions in water, which have been known only in the field of biological reactions and catalysis research. The method combines the submerged photosynthesis method, in which photoirradiation of metal surfaces in neutral water at room temperature and pressure results in the growth of unique protruding metal oxide nanocrystals with photoinduced water splitting, with free radical generation methods in water, such as photoirradiation, reactive oxygen species, and ultrasound irradiation, to fabricate metal oxides nanostructure. By this method, metal oxide nanostructures were produced directly from metallic raw materials, which was not possible in the past, and their applicability to optoelectronic devices was evaluated.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果より様々な金属基板に酸化物ナノ構造を安価で簡便に、かつ大面積に作製することができるから産業応用上有利であり、さらに金属-金属酸化物の接合界面を舞台とした光エレクトロニクスや光エネルギー変換工学の学術領域の発展に貢献し、太陽電池、殺菌デバイス等、様々なデバイス開発にも利用できる。さらに、水中ラジカル反応による光機能性金属ナノ酸化物の促進作製法を確立することで、多くの分野で新たな技術開発の芽を産み出す極めて創造性の高い研究テーマである。
|