Project/Area Number |
21K04911
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | Hachinohe National College of Technology |
Principal Investigator |
Kadoma Yoshihiro 八戸工業高等専門学校, その他部局等, 准教授 (90431460)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | マイクロバブル / 核生成反応 / 電極材料 / マンガン酸化物 / 微細粒子 |
Outline of Research at the Start |
リチウム-空気二次電池は、高い理論容量を有することから次世代高エネルギー密度二次電池として期待されている。この高い容量を実用的な使用条件下で実現するためには、電極反応を効率的に行うことが重要である。効率向上の方法のひとつとして、粒子の微細化による反応場の増大があげられる。これまで微細粒子の合成には様々な方法が提案されてきたが、本研究では、低コストで簡便なマイクロバブルを用いたマンガン系酸化物の合成に着目した。本手法導入することで、同時多発的な核生成反応を利用してナノポーラス化した微細粒子を合成し、物性を評価する。これらにより次世代リチウム-空気二次電池電極材料の設計指針を得ることを目指す。
|
Outline of Final Research Achievements |
A method using microbubbles was incorporated as a new method for synthesizing electrode materials, and the electrode properties of the synthesized samples were investigated. The use of microbubbles can induce simultaneous nucleation reactions, which is expected to obtain finer and more uniform particles. Using microbubbles, manganese oxide-based electrode materials were successfully synthesized, and uniform particles were obtained. The samples with a partial substitution of manganese were also able to synthesize. The synthesized samples were found to exhibit good electrode properties. It was suggested that the improvements were due to the decrease in electrode resistance caused by the homogenization of the particles. The microbubble-based synthesis method was shown to be useful as a new material synthesis method.
|
Academic Significance and Societal Importance of the Research Achievements |
電極材料の合成にはこれまで、様々な手法やが用いられ、詳細な組成の検討がなされてきた。そのような状況の中で、マイクロバブルを合成手法に取り入れることにより、同時多発的に核生成反応を起こし、試料を微細化、均一化することができた。また、この手法は溶液法を主体としており、試料の組成制御や大量合成化にも対応可能である。マイクロバブルを用いた手法が確立されれば、スケールアップも比較的容易であることから、量産化および低コスト化が期待できる。これにより、これからの電池の大型化向けた、材料供給に関わる需要にも貢献可能となる。
|