• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Improvement of prediction accuracy of advanced reactors: Precise and robust cross section adjustment method based on active subspace approach

Research Project

Project/Area Number 21K04940
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 31010:Nuclear engineering-related
Research InstitutionNagoya University

Principal Investigator

Yamamoto Akio  名古屋大学, 工学研究科, 教授 (50362265)

Co-Investigator(Kenkyū-buntansha) 遠藤 知弘  名古屋大学, 工学研究科, 准教授 (50377876)
丸山 修平  国立研究開発法人日本原子力研究開発機構, 高速炉・新型炉研究開発部門 大洗研究所 高速炉サイクル研究開発センター, 研究職 (70742170)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords炉心解析 / 断面積調整 / 感度係数 / 決定論的サンプリング / 遮へい / 不確かさ低減 / 連続エネルギーモンテカルロ / 代理モデル / M推定 / 特異値分解 / ベイジアンモンテカルロ法 / Unscented Transformation / 革新型原子炉 / 有効部分空間法 / 連続エネルギーモンテカルロ法
Outline of Research at the Start

本研究においては、①情報科学の分野で活用されている有効部分空間法(Active subspace, AS法)と計算モデル上の近似が非常に少ない連続エネルギーモンテカルロ法を組み合わせて断面積調整を行う、②ベイズ推定とモンテカルロ法を組み合わせたBayesian Monte-Carlo (BMC)法を用いることで、実験データの外れ値・ノイズなどに対する耐性が高い(ロバストな)断面積調整を実現し、①計算モデル誤差の影響を受けない、②実験データの質に依存しにくい、③誤差として正規分布の仮定を必要としない、などの特徴を有する断面積調整法を確立する。

Outline of Final Research Achievements

A new cross section adjustment method to reduce the uncertainty of the reaction cross-sections, which is a major source of uncertainty in the nuclear design of advanced nuclear reactors.
The main outcomes are as follows: (1)A combination of the active subspace, which is used in the field of information science, and the continuous energy Monte Carlo method, which has very few approximations in calculation models, is newly applied for the cross section adjustment. (2) By using the M-estimation method, which is used in machine learning of robotics, a cross section adjustment method that is robust to outliers and noise in experimental data is developed.

Academic Significance and Societal Importance of the Research Achievements

本研究においては、情報科学やロボティクス分野で用いられていた概念(active subspace、M推定)を原子炉の核特性解析に適用することにより、これまで大きな課題となっていた外れ値やノイズに耐性のある断面積調整法を開発することが出来た。また、遮蔽実験など、核特性の予測に直接用いることが出来ないと思われていた実験データの活用に道を拓いた。本研究の成果により、革新炉および既設炉の核特性シミュレーションの不確かさを減少させることができ、予測値の不確かさ現象は原子力安全の確保につながる。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (23 results)

All 2024 2023 2022 2021

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (17 results) (of which Int'l Joint Research: 9 results)

  • [Journal Article] Uncertainty reduction of sodium void reactivity using data from a sodium shielding experiment2024

    • Author(s)
      Shuhei Maruyama,Tomohiro Endo, Akio Yamamoto
    • Journal Title

      Journal of Nuclear Science and Technology

      Volume: 61 Issue: 1 Pages: 31-43

    • DOI

      10.1080/00223131.2023.2244512

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Deterministic sampling method using simplex ensemble and scaling method for efficient and robust uncertainty quantification2024

    • Author(s)
      Tomohiro Endo, Shuhei Maruyama, Akio Yamamoto
    • Journal Title

      Journal of Nuclear Science and Technology

      Volume: 61 Issue: 3 Pages: 363-374

    • DOI

      10.1080/00223131.2023.2231931

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] An estimation method for an unknown covariance in cross-section adjustment based on unbiased and consistent estimator2023

    • Author(s)
      Shuhei Maruyama,Tomohiro Endo, Akio Yamamoto
    • Journal Title

      Journal of Nuclear Science and Technology

      Volume: 60 Issue: 11 Pages: 1372-1385

    • DOI

      10.1080/00223131.2023.2203707

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Nuclear data adjustment using a deterministic sampling method with unscented transformation2023

    • Author(s)
      Yuhei Fukui, Tomohiro Endo, Akio Yamamoto
    • Journal Title

      Journal of Nuclear Science and Technology

      Volume: 60 Issue: 3 Pages: 238-250

    • DOI

      10.1080/00223131.2022.2095051

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Development of a robust nuclear data adjustment method to outliers2023

    • Author(s)
      Yuhei Fukui, Tomohiro Endo, Akio Yamamoto, Shuhei Maruyama
    • Journal Title

      EPJ Web of Conferences

      Volume: 281 Pages: 00006-00006

    • DOI

      10.1051/epjconf/202328100006

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Applicability evaluation of Akaike’s Bayesian information criterion to covariance modeling in the cross-section adjustment method2023

    • Author(s)
      Shuhei Maruyama, Tomohiro Endo, Akio Yamamoto
    • Journal Title

      EPJ Web of Conferences

      Volume: 281 Pages: 00008-00008

    • DOI

      10.1051/epjconf/202328100008

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Presentation] 最大エントロピー法に基づく連続エネルギーモンテカルロ法での散乱角度分布の核データ不確かさ評価手法の検討2024

    • Author(s)
      丸山 修平、山本 章夫、遠藤 知弘
    • Organizer
      日本原子力学会 2024年春の年会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Data Assimilation Using Deterministic Sampling Method to Selectively Reduce Uncertainty due to Thermal Neutron Scattering Law for Light Water2024

    • Author(s)
      Yoshinari Harada, Hibiki Yamaguchi, Tomohiro Endo, Akio Yamamoto, Kenichi Tada
    • Organizer
      2024 ANS Annual Meeting
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Uncertainty Quantification of Prompt Neutron Decay Constant α due to the Thermal Neutron Scattering Law of Water2023

    • Author(s)
      Yoshinari Harada, Hibiki Yamaguchi, Tomohiro Endo, Akio Yamamoto
    • Organizer
      M&C2023, the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] simplexアンサンブルとscaling法を利用した決定論的サンプリング法に関する検討2023

    • Author(s)
      遠藤 知弘、丸山 修平、山本 章夫
    • Organizer
      日本原子力学会 2023年秋の大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 決定論的サンプリングによる軽水の熱中性子散乱則に起因した即発中性子減衰定数の不確かさ定量評価2023

    • Author(s)
      森部 太陽、原田 善成、山口 響、遠藤 知弘、山本 章夫
    • Organizer
      日本原子力学会 2023年秋の大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] ナトリウム遮蔽実験データを利用したデータ同化法によるナトリウムボイド反応度の不確かさ低減2023

    • Author(s)
      丸山 修平、遠藤 知弘、山本 章夫
    • Organizer
      日本原子力学会 2023年秋の大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Data Assimilation Using Prompt Neutron Decay Constant α for Water to Reduce Uncertainties due to Thermal Neutron Scattering Law2023

    • Author(s)
      Yoshinari Harada, Hibiki Yamaguchi, Tomohiro Endo, Akio Yamamoto
    • Organizer
      ICNC 2023, the 12th International Conference on Nuclear Criticality Safety
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Nuclear Data Sensitivity Analysis of a Sodium Shielding Experiment Based on Generalized Perturbation Theory for Data Assimilation2023

    • Author(s)
      Syuhei Maruyama, Tomohiro Endo, Akio Yamamoto
    • Organizer
      ICNC 2023, the 12th International Conference on Nuclear Criticality Safety
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Efficient Uncertainty Quantification Using Deterministic Sampling Method with Simplex Ensemble and Scaling Method2023

    • Author(s)
      Tomohiro Endo, Akio Yamamoto
    • Organizer
      ICNC 2023, the 12th International Conference on Nuclear Criticality Safety
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 一般化摂動論に基づくナトリウム遮蔽実験の核データ感度解析2023

    • Author(s)
      丸山修平, 遠藤知弘, 山本章夫
    • Organizer
      日本原子力学会2023年春の年会
    • Related Report
      2022 Research-status Report
  • [Presentation] Development of a robust nuclear data adjustment method to outliers2022

    • Author(s)
      Yuhei Fukui , Tomohiro Endo, Akio Yamamoto, Shuhei Maruyama
    • Organizer
      5th International Workshop on Nuclear Data Covariances (CW2022)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Applicability evaluation of Akaike’s Bayesian information criterion to covariance modeling in the cross-section adjustment method2022

    • Author(s)
      Shuhei Maruyama, Tomohiro Endo, and Akio Yamamoto
    • Organizer
      5th International Workshop on Nuclear Data Covariances (CW2022)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Review of data assimilation using prompt neutron decay constant2022

    • Author(s)
      Tomohiro Endo, Akio Yamamoto
    • Organizer
      5th International Workshop on Nuclear Data Covariances (CW2022)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 外れ値に堅牢な核データ調整法の開発2022

    • Author(s)
      福井悠平, 遠藤知弘, 山本章夫, 丸山修平
    • Organizer
      日本原子力学会2022年秋の大会
    • Related Report
      2022 Research-status Report
  • [Presentation] Dimension-reduced Nuclear Data Adjustment Method based on the Bayesian Monte-Carlo Method2021

    • Author(s)
      Y. Fukui, T. Endo, A. Yamamoto
    • Organizer
      American Nuclear Society 2021 Winter Meeting
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 決定論的サンプリングによる核データ調整法2021

    • Author(s)
      福井悠平, 遠藤知弘, 山本章夫
    • Organizer
      日本原子力学会 2021年秋の大会
    • Related Report
      2021 Research-status Report
  • [Presentation] 感度係数行列を用いた線形近似に基づくモンテカルロ計算代理モデルの妥当性検証2021

    • Author(s)
      山口響, 福井悠平, 遠藤知弘, 山本章夫
    • Organizer
      日本原子力学会 2021年秋の大会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi