Project/Area Number |
21K04984
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 32010:Fundamental physical chemistry-related
|
Research Institution | Toyama Prefectural University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 近赤外分光 / コヒーレントアンチストークスラマン散乱 / 金ナノ粒子 / 非破壊分析 / 誘導ラマン散乱 / 近赤外 / 表面プラズモン共鳴 / 誘導ラマン分光 / 白色光発生 / 表面増強ラマン散乱 / 光化学系 |
Outline of Research at the Start |
物質の構造・物性・機能を分子レベルで明らかにするには,ラマン分光とよばれる光散乱計測手法が有用である.光合成タンパク質や太陽電池材料,光触媒のように,主に可視光を吸収してはたらく物質を測定する場合,近赤外光を用いれば物質の損傷の可能性を低減できるが,同時に測定感度も大きく低下する. 本研究課題では,近赤外光を用いて高感度なラマン分光測定を行うための手法を開発する.誘導ラマン散乱とよばれる,特定の方向に強いラマン信号が発生する現象と,金属微粒子等によるラマン信号の増強効果とを組み合わせ,計測の高感度化を実現する.手始めに,光合成タンパク質等の構造とその変化を観測して明らかにする.
|
Outline of Final Research Achievements |
This study was aimed at the development of a surface-enhanced near-IR multiplex nonlinear Raman spectrometer using the technique of near-IR nonlinear Raman spectroscopy and surface-enhanced Raman scattering and at the elucidation of the relationship of the functions and dynamic changes in the structures of photosynthetic protein complexes. In this study, the magnitude of the surface enhancement of the near-IR nonlinear Raman scattering by gold nanoparticles was below the sensitivity limit of the spectrometer. The results of near-IR nonlinear Raman measurements of plant juice suggested that the developed spectrometer can be applied to the nondestructive analysis of fertilizer concentrations in plants.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により,近赤外非線形ラマン分光計を用いて植物体内に存在する肥料成分の分光信号を非破壊的に直接計測できる可能性が示唆された.この成果を発展させることにより,品種や栽培環境等によらず,植物中の肥料成分の濃度を非破壊的に計測することが可能になると期待される.植物中の肥料濃度のリアルタイムモニタリングが可能になれば,農業の省力化やスマート化,農作物のブランド化に大きく貢献することとなる.
|