Project/Area Number |
21K05045
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 33010:Structural organic chemistry and physical organic chemistry-related
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
TAKAZAWA Ken 国立研究開発法人物質・材料研究機構, 電子・光機能材料研究センター, 主幹研究員 (10354317)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 有機結晶 / 構造相転移 / ナノファイバー / アクチュエータ / ラマン分光 / 座屈 / 高速度カメラ / 複屈折 / 相境界 / 有機単結晶 / 単結晶 / 動的座屈 |
Outline of Research at the Start |
温度変化により有機結晶が突然粉砕する現象が古くから知られている。結晶粉砕は、構造相転移により結晶に瞬間的に大きな応力が発生するために生じる。このため、発生力を利用した高速アクチュエータ等への応用が期待されるが、結晶自体が粉砕してしまう不可逆過程であるため、デバイス応用が困難であるだけでなく、相転移機構の詳細研究も困難であった。本研究では、結晶をナノファイバー化すると、粉砕を免れ相転移の発生と進展をファイバーの屈曲変形として観測できることを示し、相転移の詳細研究を行う。さらには、ナノファイバーは粉砕しないことを利用して、繰り返し動作が可能なナノファイバー高速アクチュエータの開発を目指す。
|
Outline of Final Research Achievements |
It has been reported that some organic crystals suddenly break due to temperature-induced structural phase transitions. The development of molecular actuators with superior power by deriving mechanical work from such phase transitions is a fascinating concept. Here, we demonstrated that single crystal nanofibers of 1, 2, 4, 5-tetrabromobenzene, whose bulk crystals exhibit a sudden break, can repeatedly transform between the low and high temperature polymorphs without disintegration. Moreover, we constructed actuators using bending of nanofibers induced by the phase transition. We estimated the force generated by the actuator and found that it can generate a force large enough to flick an object 10,000 times heavier than the fiber itself into the air against gravity.
|
Academic Significance and Societal Importance of the Research Achievements |
温度変化や光照射などの外部刺激が誘起する有機結晶の構造相転移は、基礎科学とデバイス応用の両面から注目を集めている。中でも、構造相転移により粉砕を示す結晶は、現象の高速性と発生応力の大きさから、高速・高出力アクチュエータなどへの応用が期待されている。本研究では、粉砕を伴う相転移のダイナミクス研究を可能にする手法を開発しただけでなく、デバイス応用の可能性も実証した。従って、基礎科学とデバイス応用の両面で、波及効果・発展性が期待できる。
|