Project/Area Number |
21K05099
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 34010:Inorganic/coordination chemistry-related
|
Research Institution | Hiroshima University |
Principal Investigator |
Shang Rong 広島大学, 先進理工系科学研究科(理), 助教 (70754216)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | photoredox / redox active ligand / main group ligand / triplet ground state / electronic tuning / Aurate / Carbene / boron / 反芳香族σ配位子 / 有機遷移金属化学 / 機能性材料 |
Outline of Research at the Start |
本課題で研究対象とする分子群では,ホウ素と窒素からなる新規カルベン配位子のBNCを 鍵化合物として,反芳香族配位子による電子的、立体的なチューニング効果と,そこから導 かれる酸化還元特性との相関関係を明らかにする。近年,重原子であるがゆえの 特徴的な酸化還元挙動を示す金錯体に備わった触媒機能に注目が集まっており,光や熱によって誘起された電子移動過程の本質を解き明かすことは,また同時に錯体化学において普遍的一 般原理へと導くと期待される。未解明の金錯体を合成単離し, その物理的・化学的特性評価によって触媒能の向上や機能性材料としての基盤構築に貢献する。
|
Outline of Final Research Achievements |
This project established synthetic route to a highly π-accepting anti-aromatic 4π B, N-heterocyclic Carbene (BNC), which allowed the isolation of an anionic gold(I) complex. This demonstrates that an interplay of electronegative elements such as boron and the numbers of π electrons in a planar conjugated ligand is crucial in tuning electronic properties of metal complexes. By using the same strategy, a CCC-type pincer based on a dipyridal-annulated N-heterocyclic carbene was developed, which allowed complexation to a Ir(I) precursor to form a homoleptic octahedral Ir(III) bispincer metallacycle. This dark purple complex underwent a step-wise 4e oxidation to yield a chiral Ir(III) complex with a triplet ground state. Together these findings present an effective design strategy for tuning electronic properties and/or accessing higher spin states of transition metal complexes.
|
Academic Significance and Societal Importance of the Research Achievements |
The successful isolation of thermally stable, previously inaccessible complexes means we have developed an effective design strategy to access molecules with unusual photophysical properties, providing a powerful to further studies towards understanding of photoredox behaviors of metal complexes.
|