Project/Area Number |
21K05125
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 34020:Analytical chemistry-related
|
Research Institution | University of Yamanashi |
Principal Investigator |
Kuzume Akiyoshi 山梨大学, 大学院総合研究部, 准教授 (20445456)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | ラマン分光 / Ni触媒 / in situ計測 / シェル被覆ナノ粒子 / 増強素子 / ナノ粒子合成 / 合金触媒 / ラマン分光法 / 水電解 / ニッケル / in situ / オペランド / SHINERS / 燃料電池 / 表面増強ラマン分光法 / 電気化学 / 電気化学触媒 / オペランド計測 |
Outline of Research at the Start |
燃料電池デバイスの本格的な普及に向けた主要素材開発の実用化研究で、基礎研究の成果があまり活用できていない問題点がある。本研究では、『実用化研究に有用な基礎研究成果を獲得するためのオペランド研究の基礎を構築すること』を提案する。そのために二つの課題を立てる。(1)発電環境下での触媒挙動を原子レベルでリアルタイム追跡する直接観察技術(オペランド分光法)の開発を目指す。(2)発電セルでの評価指針に合う触媒を設計・合成し、反応活性・選択性・安定性の優れた触媒開発を目指す。オペランド計測で得られた「生」の情報から、効率的な触媒設計がさらに促進され、燃料電池の実用化が強く推進される事が期待される。
|
Outline of Final Research Achievements |
The research objective is to acquire fundamental knowledge of electrode catalysts that is useful for fuel cell development by introducing [practical evaluation guideline] and [practical operando methodology] into the basic research. To achieve this goal, (i) we have developed optical nano-amplifiers that enable high-sensitivity operando spectroscopic measurements under specific critical environments such as high temperature, high humidity, and strong acid/base media; (ii) we have successfully clarified guidelines for developing new electrode catalysts based on basic understanding and knowledge of correlation between surface structure and reaction activity for Ni water electrolyzer catalyst acquired by a newly developed operando measurement. These results were presented in 12 related peer-reviewed journals (international/domestic) and 14 conference presentations including 3 invited lectures.
|
Academic Significance and Societal Importance of the Research Achievements |
これまで測定困難であった高温・強酸・強塩基など様々な過酷な実用環境におけるオペランド分光計測を可能とする無機シェル被覆ナノ粒子増強ラマン分光法の確立により、表面・界面で進行する化学・電気化学反応の反応中間体や表面吸着物の同定、反応機構や反応活性点の解明が可能となり、電気化学・分析化学分野のみならず、エネルギーデバイス開発分野への学術的・技術的貢献は多大である。また脱炭素社会実現を目指した水素化社会への移行において、高機能低コストの新触媒開発への合成指針を提供することで、産業分野への社会的貢献も大きく予想され、水素製造の高効率化・低コスト化を導く研究成果である。
|