Project/Area Number |
21K05197
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 35020:Polymer materials-related
|
Research Institution | Nagoya University |
Principal Investigator |
Noro Atsushi 名古屋大学, 工学研究科, 講師 (90377896)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 燃料電池 / 電解質膜 / 脱保護 / 伝導率 / 架橋 / ポリスチレンスルホン酸 / イオン交換容量 / スルホン酸エステル / 固体高分子形燃料電池 / 高分子電解質膜 / プロトン伝導率 / 無加湿 / 強酸性官能基 / 架橋ポリマー / 架橋点 / プロトン伝導 |
Outline of Research at the Start |
強酸性官能基を有し、かつビニルポリマーをベースとした架橋ポリマーに対し、強酸を浸み込ませて新規無水高分子電解質膜を創製する。プロトン伝導率に関して、無加湿下の無水高分子電解質膜がナフィオン等の加湿系高分子電解質膜を凌駕(>0.1 S/cm)していることを確認する。最終的には無加湿下で高伝導率を示す無水高分子電解質膜作製のための有用な分子設計を提案する。
|
Outline of Final Research Achievements |
Generally, polymer electrolyte membranes that exhibit high conductivities at high humidities also exhibit good conductivities at low humidities, and electrolyte membranes that exhibit high conductivities independent of humidity conditions are desired. The conductivity of the electrolyte membrane is strongly dependent on the density of acid groups in the electrolyte membrane, and there has been great interest in developing electrolyte membranes with a high density of acid groups. In this study, a crosslinked poly(4-styrenesulfonic acid) membrane with a high sulfonic acid group density was synthesized using relatively mild synthesis by deprotection. The membrane exhibited a very high conductivity of 0.93 S/cm at 80°C and 90% RH. By comparison, the Nafion 212 membrane exhibited 0.15 S/cm under the same conditions.
|
Academic Significance and Societal Importance of the Research Achievements |
燃料電池は二酸化炭素を発生させずにクリーンに発電できるシステムで、重要な脱炭素技術の一つであり、すでに燃料電池自動車(FCV)や家庭用燃料電池コジェネレーションシステム(エネファーム)等に採用されており、本研究成果は、燃料電池の普及に資するものであり、今後行われる燃料電池関連研究に対し、重要な学術的示唆を与えるものである。
|