Project/Area Number |
21K05210
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 35030:Organic functional materials-related
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
TATEWAKI Yoko 東京農工大学, 工学(系)研究科(研究院), 講師 (30435763)
|
Co-Investigator(Kenkyū-buntansha) |
西原 禎文 広島大学, 先進理工系科学研究科(理), 教授 (00405341)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | ナノコイル / 分子性導体 / 分子集合体 / ナノワイヤ / 誘導起電力 / 電磁誘導 / 分子性ナノコイル / 電荷移動錯体 / 電磁物性 / 起電力 / スキャホールド / 電磁ナノコイル / ナノ物性 / 分子性コイル / 電磁特性 |
Outline of Research at the Start |
申請者はこれまでに、分子性電磁ナノコイルが電磁誘導に基づき誘導起電力を生じることを世界で初めて実証し、学術的・産業的に多くの注目を集めた。しかし、電磁物性発現の根幹である「分子性電磁ナノコイルの構造」と「電磁物性」の相関が解明されておらず、解決するべき学術的「問い」として残されている。また、分子性電磁ナノコイルが有する高い細胞接着性、電磁特性は細胞工学上重要であり、再生医療分野において細胞の分化・増殖を飛躍的に向上させることができるため応用が期待されている。そこで本研究では、分子性電磁ナノコイルスキャホールドを用いた細胞培養と再生医療への応用へと展開し、再生医療バイオデバイスの開発を目指す。
|
Outline of Final Research Achievements |
This study aimed to investigate the structures of molecular electromagnetic nanocoils that are able to produce an electromotive force and the structure and electro-magnetic property relationships, and to develop a self-powered electromagnetic nanocoil scaffold. More specifically, molecular electromagnetic nanocoils composed of organic conductive molecules were assembled. Furthermore, by characterising the electromagnetic properties of the self-powered molecular electromagnetic nanocoils, the relationship between the structure and electromagnetic properties of the molecular electromagnetic nanocoils was investigated. Furthermore, a molecular electromagnetic nanocoil scaffold was prepared and cell culture was carried out, and it was found that the molecular electromagnetic nanocoil did not show cytotoxicity and the cell growth rate was more than twice as high as that of the molecular electromagnetic nanocoil.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、「分子性電磁コイルの電磁物性」の構造学的解明を図った。分子性電磁コイルの誘導起電力を細胞培養へ適用することで、細胞増殖を活性化させる自己発電型ナノコイルスキャホールドの創成は学術的・産業的に重要な課題であると位置づけられる。また、これまでに、電場や磁場が細胞増殖過程に大きく関与することは既に明らかとなっている。分子性ナノコイルを足場材料として利用することで、電磁誘導に基づく局所電場を細胞増殖、組織再生に利用するという内容は先駆的な課題である。
|