Project/Area Number |
21K05226
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
|
Research Institution | Mie University |
Principal Investigator |
Taminato Sou 三重大学, 工学研究科, 助教 (60771201)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 全固体リチウム二次電池 / 正極材料 / 薄膜電池 / LiCoO2 / 高電圧動作 / リチウム脱挿入反応 / パルスレーザー堆積法 / RFマグネトロンスパッタ法 / 固体界面 |
Outline of Research at the Start |
これまでに見出した「蓄電池の全固体化による正極反応の可逆性とサイクル安定性向上」に基づき,反応性の高い有機電解液との副反応で分解するため使用が見送られてきた材料(反応)に着目して,可逆的かつ安定な高エネルギー密度正極反応を示す材料を開拓する.本研究では,高電位側に電位窓が広く化学的に安定なリン酸塩電解質と全固体モデル薄膜電池を構築して,正極反応と構造を評価し,固体電解質と組み合わせることで可逆的な高エネルギー密度反応を示す全固体Li二次電池用の正極材料を見出す.
|
Outline of Final Research Achievements |
Thin-film all-solid-state batteries were prepared using a ca. 30 nm thick LiCoO2 thin-film electrode with a layered rock salt structure and an amorphous Li3PO4 solid electrolyte. The LiCoO2 thin-film electrode was tested for high-voltage operation in the all-solid-state battery configuration. The same electrode was also tested in a liquid electrolyte system. In the all-solid- state configuration operating in the range of 3-4.6 V, no significant change in discharge capacity even after 50 cycles of charge-discharge measurements. Furthermore, Li/Li3PO4/LiCoO2/SrRuO3/SrTiO3(100) cell provide high-energy reaction with small degradation in the range of 3-4.8 V by introduction of the solid electrolyte layer between LiCoO2/Li3PO4 interface. Our experimental study suggests the potential of a stable high energy density battery reaction in the all-solid-state battery configuration.
|
Academic Significance and Societal Importance of the Research Achievements |
LiCoO2およびLi5FeO4は高電圧,高容量電極反応過程において,いずれも充電時のLi+脱離以外に反応性の高い有機電解液との副反応で不可逆な酸素脱離が進行して正極自身が分解する.その結果,放電時に容量が取り出せずサイクル安定性も低く,液系電池では材料(反応)の使用が見送られてきた.本検討では,特にLiCoO2について,電位窓の広いリン酸塩固体電解質と組み合わせて固体電池として動作させることで高電圧動作条件においても,高容量反応の可逆特性が向上することを見出した.得られた知見は正極材料の高エネルギー密度化に向けた材料探索や反応制御に貢献すると考えられる.
|