Project/Area Number |
21K05242
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Noriyuki Sonoyama 名古屋工業大学, 工学(系)研究科(研究院), 准教授 (50272696)
|
Co-Investigator(Kenkyū-buntansha) |
山本 勝宏 名古屋工業大学, 工学(系)研究科(研究院), 准教授 (30314082)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | イオン導電体 / 層状複水酸化物 / ゲル / ゲル形成 / イオン導電率 / 微粒子 / クラスター / 水酸化物イオン導電体 |
Outline of Research at the Start |
Mg, Al を含む層状水酸化物である層状複水酸化物(LDH)ナノ粒子のゲルを作成し、その構造とイオン導電性機構を解明することを目的とする。 1.MgAl LDH ゲルの構造解析 Mg-Al の比率を変えて LDH ゲルを作成し、その微細構造を、分光法により明らかにする。 2.LDH ネットワーク構造とイオン伝導機構の解明 LDH の濃度を変化させてゲルを合成する。LDH ナノ粒子ネットワーク構造を 解明する。 3.LDH ナノ粒子を用いた新規固体電解質の開発 得られた LDH ナノ粒子間イオン導電機構を利用した LDH ナノ粒子固体イオン導電体を設計する。
|
Outline of Final Research Achievements |
The layered double hydroxide (LDH) gel can be easily prepared in a self-forming manner at room temperature and under air. X-ray diffraction and Raman measurements showed that the LDH gel is composed of LDH particles with the same crystal structure as LDH powder. Extended X-ray absorption fine structure measurements revealed that the gel is formed by interactions between LDH particles that involve the surrounding water. LDH gel also showed high ionic conductivity of up to 1.37×10-1 S/cm. This is thought to be due to the high speed movement of hydroxide ions through the network formed by water and LDH particles.
|
Academic Significance and Societal Importance of the Research Achievements |
層状複水酸化物(LDH)は、非常に高い水酸化物イオン導電性を示す。そのため、LDHゲルは、リチウムイオン電池の約2倍のエネルギー密度を持つ亜鉛空気二次電池の電解質として用いることが期待される。しかし、リチウム空気二次電池の電解質への応用は現時点では困難であった。今後克服すべき課題として、LDHゲルの物理的強度の改良・界面形成の最適化・セルの構成・充放電時の条件など多くのことを調整する必要がある。
|