Project/Area Number |
21K05838
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 41030:Rural environmental engineering and planning-related
|
Research Institution | National Agriculture and Food Research Organization |
Principal Investigator |
Kimura Nobuaki 国立研究開発法人農業・食品産業技術総合研究機構, 農村工学研究部門, 上級研究員 (40706842)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2023: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 少ないデータ量 / 深層学習 / 水位予測手法 / 物理モデル / 転移学習 / 少ない量のデータ / 排水管理 / データ補完技術 |
Outline of Research at the Start |
効率、かつ迅速な低平地の排水管理を行なうために、深層学習モデルを導入した水位予測手法が必要であるものの、深層学習モデルの実行に不可欠な良質、かつ大量の観測データの収集に時間と労力を奪われることが課題である。これを解決するために、物理モデルを導入し、観測値の代替となる擬似データを生成する。さらに、あるデータのパターンを別のデータに転移する「転移学習」を導入することで、疑似データを観測値に近似できる。このように、物理モデルに起因する誤差を含む疑似データをより現実的なデータに修正し、データ補充を行うことで、観測データが不十分な場合にも物理モデルと深層学習モデルによって高精度な水位予測を可能にする。
|
Outline of Final Research Achievements |
This study aimed to create a robust AI model that predicts water levels for0 severe flood events in rivers and agricultural water facilities (e.g., drainage pumping stations) using deep learning. For a small number of data samples, such as the number of large-flood occurrences, the AI models have poor performance in accurate prediction due to data-driven models that require large amounts of data. To improve this problem, first, we artificially generated a large amount of virtual data comparable to large floods using a physical model (e.g., a runoff analysis model), and used the data as training data for the AI model to construct a pre-learned model. Next, to incorporate with the observed data features, we established a highly accurate prediction method by retraining part of the pre-trained model (i.e., transfer learning) using few observed data samples.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の学術的意義について、一般に、深層学習モデルは、データサンプル数が少ない場合には、予測精度が劣るものの、その欠点を補うために物理モデルからの疑似データを割増し、さらに、転移学習で疑似データの特徴をサンプル数が少ない対象に転移することで、予測精度の向上が可能な手法(物理ガイド深層学習モデル)を開発した。 社会的意義について、現地の観測データのサンプルが少ない場合でも、物理モデルで疑似生成された大量のデータを併用して学習する、物理ガイド深層学習モデルは、現地への適用を通して、実用的に有用であることを明らかにし、さらに、データ保有に関して同様な条件の他の地区へ普及させる可能性が見出せた。
|