Project/Area Number |
21K06043
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 43020:Structural biochemistry-related
|
Research Institution | Institute of Physical and Chemical Research (2021, 2023) Tokyo Institute of Technology (2022) |
Principal Investigator |
Malay Ali 国立研究開発法人理化学研究所, 環境資源科学研究センター, 上席研究員 (40467006)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2022: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2021: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
|
Keywords | silk / biopolymer / liquid phase separation / biomolecular condensate / biomimetic / fibrous protein / coacervate / nanofibril / self-assembly / biomimetics / phase separation / spider / biomaterial / biochemistry / silk protein |
Outline of Research at the Start |
Spider silk is a protein biopolymer with extreme mechanical properties; however, the mechanism for silk fiber formation is not well understood. Recently, we found that spider silk undergoes self-assembly via liquid-liquid phase separation and nanoscale fibril formation in response to different chemical stimuli. In this project we will explore the sequence features of silk proteins that govern the the self-assembly process. These results will help develop methods to produce artificial spider silk fibers that mimic the hierarchical structure and mechanical properties of natural spider silk.
|
Outline of Final Research Achievements |
Most of the research goals discussed in the grant proposal were achieved, including the design and evaluation of spider silk protein (spidroin) sequence variants to investigate the role of conserved motifs within the repetitive regions of MaSp2, particularly in the context of liquid-liquid phase separation (LLPS) behavior and self-assembly into hierarchical nanofibril structures in response to native-like chemical and physical gradients. In addition, a novel platform for recombinant MaSp1 production was established, allowing the detailed characterization of LLPS events and development of a method for real-time monitoring of the self-assembly process from soluble protein state into hierarchically organized fibers. Furthermore, investigations into the synergistic effects of MaSp1 and MaSp2 with respect to dragline fiber structure and function have been carried out. Finally, a study concerning the self-assembly of recombinant spider silk via microfluidics has been completed.
|
Academic Significance and Societal Importance of the Research Achievements |
材料科学における長年の目標は、驚異的な強靭さと生体適合性で知られるクモの糸の特性に匹敵するかそれを上回る人工繊維を製造することである。この研究では、天然繊維の紡績装置内で起こる複雑な化学的・物理的プロセスを理解し再現することで、必要最小限のエネルギーと非常に低い環境フットプリントで高性能繊維を実現しようとしている。また、慎重に設計された組換えタンパク質配列と液液相分離の応用、および原生に近い物理化学的トリガーに反応するナノフィブリルの自己組織化に基づき、人工クモ糸製造のためプラットフォームを作ろると試みこれらの成果は将来、高性能で環境に優しい素材のさらなる開発につながることが期待される。
|