• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of Deep Learning Model for Determining Histological Treatment Effect after Neoadjuvant Therapy of Lung Cancer

Research Project

Project/Area Number 21K06923
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 49020:Human pathology-related
Research InstitutionNara Medical University (2023)
Kyoto University (2021-2022)

Principal Investigator

YOSHIZAWA Akihiko  奈良県立医科大学, 医学部, 教授 (80378645)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords肺癌 / ネオアジュバント化学療法 / 主病理学的奏功率 / バイオマーカー / デジタルパソロジー / 人工知能 / 深層学習 / 非小細胞肺癌 / 主要病理学的奏功 / 免疫チェックポイント阻害剤 / 標的治療薬 / 術前補助療法 / 病理組織学的効果判定 / HE染色 / Whole slide image
Outline of Research at the Start

肺癌は罹患率,死亡率ともに最も高い悪性腫瘍である。術前補助療法(ネオアジュバント療法:以下NAC)を受ける患者は昨今の治療薬の進歩に従い増加してる。その治療効果判定は採取された組織材料を病理医が顕微鏡で観察し判定しているが,標準化できているとはいえない。本研究では,NAC後切除肺から作成したデジタル病理画像を用い,人工知能を基盤とした客観性のあるNAC後組織学的効果判定モデルの構築を行う。

Outline of Final Research Achievements

Pathologists must histologically evaluate the effect of Neoadjuvant therapies (NAT) with resected specimens. Major pathological response (MPR) has recently been proposed for the evaluation; however, poor reproducibility is often noted. The aim of this study was to develop a deep learning (DL) model to predict MPR from digital images and to validate its utility for clinical use. We collected data on 125 non-small cell lung carcinomas resected after NAT and estimated MPR using an original DL model which we previously developed.
In cross-validation, accuracy and mean F1 score were over 0.800. During testing, accuracy and mean F1 score were over 0.943. The areas under the receiver operating characteristic curve were over 0.978. The disease-free survival based on MPR predicted by the DL-based model was almost identical to that by pathologists.
The DL model may support pathologist evaluations and can offer accurate determinations of MPR in patients.

Academic Significance and Societal Importance of the Research Achievements

近年、非小細胞肺癌は従来の白金製剤を主体とした化学療法に加え,分子標的治療薬(TC)や免疫チェックポイント阻害剤(ICI)など治療オプションが増えた癌腫でもある。その評価は治療後の切除病理標本における残存腫瘍の病理組織学的評価となりつつある。一方で病理医の負担は増し,また標準化も進んでいるとはいえない。今回我々が開発したDLモデルは独自性が高く,それを解消するツールとして実臨床において大きな成果をもたらす可能性があり,学術的意義は高いものと考える。また,TCやICIは多くの癌腫で利用され始めており,開発したDLモデルは癌腫を超え展開することのできる可能性を秘め、社会的意義は高いものと思われる。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (4 results)

All 2023 2021

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results)

  • [Journal Article] Deep Learning for Predicting Effect of Neoadjuvant Therapies in Non-Small Cell Lung Carcinomas With Histologic Images2023

    • Author(s)
      Terada K, Yoshizawa A, Liu X, Ito H, Hamaji M, Menju T, Date H, Bise R, Haga H.
    • Journal Title

      Modern pathology

      Volume: 36 Issue: 11 Pages: 100302-100302

    • DOI

      10.1016/j.modpat.2023.100302

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Presentation] Development and Examination of a Convolutional Neural Network System to Evaluate the Therapeutic Effect of Preoperative Treatment on Non-small Cell Lung Carcinoma Cases2023

    • Author(s)
      Kazuhiro Terada, Akihiko Yoshizawa, Xiaoqing Liu, Ryoma Bise, Hironori Haga
    • Organizer
      USCAP 2023 Annual meeting
    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 病理診断領域における人工知能の応用2023

    • Author(s)
      吉澤明彦
    • Organizer
      第61回日本癌治療学会学術集会 教育シンポジウム
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 今どこにいるのか,そしてどこに向かうのか ~肺癌病理領域における人工知能~2021

    • Author(s)
      吉澤明彦
    • Organizer
      第62回 日本肺癌学会学術集会 シンポジウム16
    • Related Report
      2021 Research-status Report
    • Invited

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi