• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The integration of non-invasive imaging of tumor characteristics with deep learning analysis for personalized decision making in patients with head and neck cancer

Research Project

Project/Area Number 21K07558
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionHokkaido University

Principal Investigator

Fujima Noriyuki  北海道大学, 大学病院, 講師 (80431360)

Co-Investigator(Kenkyū-buntansha) 本間 明宏  北海道大学, 医学研究院, 教授 (30312359)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
KeywordsMRI / 人工知能 / 頭頸部癌 / 深層学習 / 頭頚部癌
Outline of Research at the Start

頭頸部扁平上皮癌の予後予測因子として一般的に重要とされている腫瘍特性に細胞増殖能および低酸素状態の有無が挙げられる。本研究は第一段階として、MRIの画像情報に数学的な後処理解析を加えることで、これらの腫瘍特性を高精度に反映させた画像を作り出すことを目的とした。さらに第二段階として、これらの腫瘍特性を反映させた画像情報を用いて、より精度の高い予後予測法を構築することを目的とした。これには、腫瘍特性を反映させた画像情報に対して、深層学習をベースにした解析を施すことで、より精度の高い診断モデルを構築する。

Outline of Final Research Achievements

Our investigation tried to non-invasively achieve the imaging of functional information in head and neck cancers using MRI. Specifically, we developed imaging methods to visualize protein metabolism within the tumor and to image the microstructure and microarchitecture within the tumor. For these imaging processes, deep learning-based image reconstruction was utilized to obtain higher resolution information within the imaging durations feasible in routine clinical practice. Furthermore, using machine learning-based methods, we elucidated the association between the imaged information and prognostic factors for patients. Based on these findings, we constructed a model to use the imaging information as a prognostic factor clinically, preparing it for future clinical use.

Academic Significance and Societal Importance of the Research Achievements

頭頸部癌は病理組織学的に同一の組織型であっても生物学的性状が異なる場合が多く、根治治療を達成するためにそれらに応じた個別化医療が求められる。本研究にて得られた画像撮像法により腫瘍の生物学的性状の一部の画像化が達成されたため、腫瘍のより詳細な細分化が可能となった。また、これらの画像情報を機械学習による解析にて、予後予測因子と深く関連することが示唆され、治療反応性の予測を介した個別化医療に向けたバイオマーカーのひとつとなりえると考えられる。これらを今後、臨床的に活用することで、患者予後の改善、および必要ないし不要な治療の判別などで医療費抑制にも有効であることが予想される。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (15 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (1 results) Journal Article (14 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 14 results,  Open Access: 8 results)

  • [Int'l Joint Research] Boston Medical Center(米国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Diagnosis of skull-base invasion by nasopharyngeal tumors on CT with a deep-learning approach2024

    • Author(s)
      Nakagawa Junichi、Fujima Noriyuki、Hirata Kenji、Harada Taisuke、Wakabayashi Naoto、Takano Yuki、Homma Akihiro、Kano Satoshi、Minowa Kazuyuki、Kudo Kohsuke
    • Journal Title

      Japanese Journal of Radiology

      Volume: - Issue: 5 Pages: 1-10

    • DOI

      10.1007/s11604-023-01527-7

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Utility of Echo Planar Imaging With Compressed Sensing-Sensitivity Encoding (EPICS) for the Evaluation of the Head and Neck Region2024

    • Author(s)
      Hirano Yuya、Fujima Noriyuki、Ishizaka Kinya、Aoike Takuya、Nakagawa Junichi、Yoneyama Masami、Kudo Kohsuke
    • Journal Title

      Cureus

      Volume: -

    • DOI

      10.7759/cureus.54203

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Non-Gaussian model-based diffusion-weighted imaging of oral squamous cell carcinoma: associations with Ki-67 proliferation status2023

    • Author(s)
      Shima Tomoka、Fujima Noriyuki、Yamano Shigeru、Kameda Hiroyuki、Suzuka Masaaki、Takeuchi Akiko、Kinoshita Yurika、Iwai Nanami、Kudo Kohsuke、Minowa Kazuyuki
    • Journal Title

      Oral Radiology

      Volume: - Issue: 4 Pages: 661-667

    • DOI

      10.1007/s11282-023-00682-x

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging2023

    • Author(s)
      Fujima Noriyuki、Kamagata Koji、Ueda Daiju、Fujita Shohei、Fushimi Yasutaka、Yanagawa Masahiro、Ito Rintaro、Tsuboyama Takahiro、Kawamura Mariko、Nakaura Takeshi、Yamada Akira、Nozaki Taiki、Fujioka Tomoyuki、Matsui Yusuke、Hirata Kenji、Tatsugami Fuminari、Naganawa Shinji
    • Journal Title

      Magnetic Resonance in Medical Sciences

      Volume: 22 Issue: 4 Pages: 401-414

    • DOI

      10.2463/mrms.rev.2023-0047

    • ISSN
      1347-3182, 1880-2206
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Multiparametric machine learning algorithm for human papillomavirus status and survival prediction in oropharyngeal cancer patients2023

    • Author(s)
      Fazelpour Sherwin、Vejdani‐Jahromi Maryam、Kaliaev Artem、Qiu Edwin、Goodman Deniz、Andreu‐Arasa V. Carlota、Fujima Noriyuki、Sakai Osamu
    • Journal Title

      Head Neck

      Volume: 45 Issue: 11 Pages: 2882-2892

    • DOI

      10.1002/hed.27519

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck2023

    • Author(s)
      Fujima Noriyuki、Nakagawa Junichi、Kameda Hiroyuki、Ikebe Yohei、Harada Taisuke、Shimizu Yukie、Tsushima Nayuta、Kano Satoshi、Homma Akihiro、Kwon Jihun、Yoneyama Masami、Kudo Kohsuke
    • Journal Title

      Magnetic Resonance Materials in Physics, Biology and Medicine

      Volume: - Issue: 3 Pages: 439-447

    • DOI

      10.1007/s10334-023-01129-4

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Amide proton transfer imaging for the determination of human papillomavirus status in patients with oropharyngeal squamous cell carcinoma2022

    • Author(s)
      Fujima N*, Shimizu Y, Yoneyama M, Nakagawa J, Kameda H, Harada T, Hamada S, Suzuki T, Tsushima N, Kano S, Homma A, Kudo K.
    • Journal Title

      Medicine (Baltimore)

      Volume: 101(28) Issue: 28 Pages: e29457-e29457

    • DOI

      10.1097/md.0000000000029457

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The utility of diffusion-weighted T2 mapping for the prediction of histological tumor grade in patients with head and neck squamous cell carcinoma2022

    • Author(s)
      Fujima N*, Shimizu Y, Yoneyama M, Nakagawa J, Kameda H, Harada T, Hamada S, Suzuki T, Tsushima N, Kano S, Homma A, Kudo K.
    • Journal Title

      Quant Imaging Med Surg

      Volume: 12(8) Issue: 8 Pages: 4024-4032

    • DOI

      10.21037/qims-22-136

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Utility of the deep learning technique for the diagnosis of orbital invasion on CT in patients with a nasal or sinonasal tumor2022

    • Author(s)
      Nakagawa J, Fujima N*, Hirata K, Tang M, Tsuneta S, Suzuki J, Harada T, Ikebe Y, Homma A, Kano S, Minowa K, Kudo K.
    • Journal Title

      Cancer Imaging

      Volume: 22(1) Issue: 1 Pages: 52-52

    • DOI

      10.1186/s40644-022-00492-0

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] MR vessel-encoded arterial spin labeling with the placement of metallic items to visualize the territorial blood flow after extracranial-intracranial bypass surgery: a proof-of-concept study2022

    • Author(s)
      Hayashi T, Fujima N*, Harada T, Hamaguchi A, Kodera S
    • Journal Title

      Acta Radiologica

      Volume: - Issue: 5 Pages: 2004-2009

    • DOI

      10.1177/02841851221151144

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Prediction of the Treatment Outcome using Machine Learning with FDG-PET Image-based Multiparametric Approach in Patients with Oral Cavity Squamous Cell Carcinoma2021

    • Author(s)
      Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, Sakai O
    • Journal Title

      Clinical Radiology

      Volume: - Issue: 9 Pages: 711.e1-711.e7

    • DOI

      10.1016/j.crad.2021.03.017

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images2021

    • Author(s)
      Fujima Noriyuki、Andreu-Arasa V. Carlota、Meibom Sara K.、Mercier Gustavo A.、Truong Minh Tam、Hirata Kenji、Yasuda Koichi、Kano Satoshi、Homma Akihiro、Kudo Kohsuke、Sakai Osamu
    • Journal Title

      BMC Cancer

      Volume: 21 Issue: 1 Pages: 900-900

    • DOI

      10.1186/s12885-021-08599-6

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Multiparametric Analysis of Tumor Morphological and Functional MR Parameters Potentially Predicts Local Failure in Pharynx Squamous Cell Carcinoma Patients2021

    • Author(s)
      Fujima Noriyuki、Shimizu Yukie、Yoshida Daisuke、Kano Satoshi、Mizumachi Takatsugu、Homma Akihiro、Yasuda Koichi、Onimaru Rikiya、Sakai Osamu、Kudo Kohsuke、Shirato Hiroki
    • Journal Title

      The Journal of Medical Investigation

      Volume: 68 Issue: 3.4 Pages: 354-361

    • DOI

      10.2152/jmi.68.354

    • NAID

      130008115660

    • ISSN
      1343-1420, 1349-6867
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Cystic cervical lymph nodes of papillary thyroid carcinoma, tuberculosis and human papillomavirus positive oropharyngeal squamous cell carcinoma: utility of deep learning in their differentiation on CT2021

    • Author(s)
      Onoue K, Fujima N, Andreu-Arasa VC, Setty BN, Sakai O
    • Journal Title

      American Journal of Otolaryngology

      Volume: 42 Issue: 5 Pages: 103026-103026

    • DOI

      10.1016/j.amjoto.2021.103026

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi