• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Radiomics and Radiogenomics Analysis Using Deep Learning in Ovarian Cancer

Research Project

Project/Area Number 21K09466
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 56040:Obstetrics and gynecology-related
Research InstitutionThe University of Tokyo

Principal Investigator

Miyamoto Yuichiro  東京大学, 医学部附属病院, 講師 (70634955)

Co-Investigator(Kenkyū-buntansha) 曾根 献文  東京大学, 医学部附属病院, 准教授 (90598872)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords卵巣癌 / 子宮肉腫 / 深層学習 / 自動診断 / 卵巣腫瘍 / ラジオミクス / ラジオジェノミクス / 人工知能 / Radiomics / Radiogenomics
Outline of Research at the Start

卵巣癌は婦人科悪性腫瘍の中で最も死亡者数が多い疾患であり、組織型が多彩である。そのため検査、治療薬が開発され多様化しているため、患者に対する適切な治療の提供が不十分であると考える。そこで我々は深層学習を用いたRadiomics/Radiogenomicsを用いた解析を行い、卵巣癌のMRI画像特徴量から卵巣腫瘍の良悪性診断、予後推定、遺伝子異常判定が行えるシステムの開発を目指す。最終的に画像データを中心とした多層データを用い、深層学習を用いたマルチオミックス解析を行う。この研究を通して、低コストかつ迅速に卵巣癌の全体像を掴み、治療選択、予後予測できる最先端の医療機器開発を目指す。

Outline of Final Research Achievements

Since ovarian cancer has a large number of cases, we first aim to establish an AI-based diagnostic system from MRI images of uterine sarcoma, and then apply the development flow to the ovarian cancer diagnostic model. We developed an automatic diagnosis system by retrospectively entering 63 uterine sarcoma cases and 200 uterine myoma cases. The development of an ovarian cancer diagnostic model was also conducted in parallel with the development of the system. The correct diagnosis rate of the uterine sarcoma MRI imaging model was comparable to that of radiologists. In the AI-assisted diagnosis, we were able to raise the diagnostic level of radiology residents to that of specialists. Preliminary experiments on the ovarian cancer diagnosis model showed relatively satisfactory results, but the number of cases is still small.

Academic Significance and Societal Importance of the Research Achievements

子宮肉腫と子宮筋腫を鑑別する深層学習モデルを開発した。このモデルの臨床応用を目指すことにより子宮肉腫の正確な診断、最適な治療方針を提供できる事になる。この開発フローを卵巣癌診断モデルの開発に応用する事ができる。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (8 results)

All 2023 2022 2021

All Journal Article (8 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 4 results)

  • [Journal Article] Evolution of a surgical system using deep learning in minimally invasive surgery (Review)2023

    • Author(s)
      Sone Kenbun、Tanimoto Saki、Toyohara Yusuke、Taguchi Ayumi、Miyamoto Yuichiro、Mori Mayuyo、Iriyama Takayuki、Wada-Hiraike Osamu、Osuga Yutaka
    • Journal Title

      Biomedical Reports

      Volume: 19 Issue: 1

    • DOI

      10.3892/br.2023.1628

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Heterogeneous effects of cytotoxic chemotherapies for platinum-resistant ovarian cancer2023

    • Author(s)
      Nara Katsuhiko、Taguchi Ayumi、Yamamoto Takehito、Hara Konan、Tojima Yuri、Honjoh Harunori、Nishijima Akira、Eguchi Satoko、Miyamoto Yuichiro、Sone Kenbun、Mori Mayuyo、Takada Tappei、Osuga Yutaka
    • Journal Title

      International Journal of Clinical Oncology

      Volume: 28 Issue: 9 Pages: 1207-1217

    • DOI

      10.1007/s10147-023-02367-1

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Development of a deep learning method for improving diagnostic accuracy for uterine sarcoma cases2022

    • Author(s)
      Toyohara Yusuke、Sone Kenbun、Noda Katsuhiko、Yoshida Kaname、Kurokawa Ryo、Tanishima Tomoya、Kato Shimpei、Inui Shohei、Nakai Yudai、Ishida Masanori、Gonoi Wataru、Tanimoto Saki、Takahashi Yu、Inoue Futaba、Kukita Asako、Kawata Yoshiko、Taguchi Ayumi、Furusawa Akiko、Miyamoto Yuichiro et al
    • Journal Title

      Scientific Reports

      Volume: 12 Issue: 1 Pages: 19612-19612

    • DOI

      10.1038/s41598-022-23064-5

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The metabolic stress-activated checkpoint LKB1-MARK3 axis acts as a tumor suppressor in high-grade serous ovarian carcinoma2022

    • Author(s)
      Hidenori Machino, Syuzo Kaneko, Masaaki Komatsu, Noriko Ikawa, Ken Asada, Ryuichiro Nakato, Kanto Shozu, Ai Dozen, Kenbun Sone, Hiroshi Yoshida, Tomoyasu Kato, Katsutoshi Oda, Yutaka Osuga, Tomoyuki Fujii, Gottfried von Keudell, Vassiliki Saloura, Ryuji Hamamoto
    • Journal Title

      Communications Biology

      Volume: 5 Issue: 1 Pages: 39-39

    • DOI

      10.1038/s42003-021-02992-4

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Genetic diagnosis of pseudomyxoma peritonei originating from mucinous borderline tumor inside an ovarian teratoma2022

    • Author(s)
      Taguchi Ayumi、Rokutan Hirofumi、Oda Katsutoshi、Tanikawa Michihiro、Tanimoto Saki、Sone Kenbun、Mori Mayuyo、Tsuruga Tetsushi、Kohsaka Shinji、Tatsuno Kenji、Shinozaki-Ushiku Aya、Miyagawa Kiyoshi、Mano Hiroyuki、Aburatani Hiroyuki、Ushiku Tetsuo、Osuga Yutaka
    • Journal Title

      BMC Medical Genomics

      Volume: 15 Issue: 1 Pages: 51-51

    • DOI

      10.1186/s12920-022-01188-x

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Application of artificial intelligence in gynecologic malignancies: A review2021

    • Author(s)
      Sone Kenbun、Toyohara Yusuke、Taguchi Ayumi、Miyamoto Yuichiro、Tanikawa Michihiro、Uchino‐Mori Mayuyo、Iriyama Takayuki、Tsuruga Tetsushi、Osuga Yutaka
    • Journal Title

      Journal of Obstetrics and Gynaecology Research

      Volume: 47 Issue: 8 Pages: 2577-2585

    • DOI

      10.1111/jog.14818

    • Related Report
      2021 Research-status Report
  • [Journal Article] Enhanced antitumor activity of combined lipid bubble ultrasound and anticancer drugs in gynecological cervical cancers2021

    • Author(s)
      Yamaguchi Kohei、Matsumoto Yoko、Suzuki Ryo、Nishida Haruka、Omata Daiki、Inaba Hirofumi、Kukita Asako、Tanikawa Michihiro、Sone Kenbun、Oda Katsutoshi、Osuga Yutaka、Maruyama Kazuo、Fujii Tomoyuki
    • Journal Title

      Cancer Science

      Volume: 112 Issue: 6 Pages: 2493

    • DOI

      10.1111/cas.14907

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Intraperitoneal Administration of a Cisplatin-Loaded Nanogel through a Hybrid System Containing an Alginic Acid-Based Nanogel and an <i>In Situ</i> Cross-Linkable Hydrogel for Peritoneal Dissemination of Ovarian Cancer2021

    • Author(s)
      Yamaguchi Kohei、Hiraike Osamu、Iwaki Haruna、Matsumiya Kazuki、Nakamura Noriko、Sone Kenbun、Ohta Seiichi、Osuga Yutaka、Ito Taichi
    • Journal Title

      Molecular Pharmaceutics

      Volume: 18 Issue: 11 Pages: 4090-4098

    • DOI

      10.1021/acs.molpharmaceut.1c00514

    • Related Report
      2021 Research-status Report
    • Peer Reviewed

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi