Project/Area Number |
21K09977
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 57050:Prosthodontics-related
|
Research Institution | Okayama University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
窪木 拓男 岡山大学, 医歯薬学域, 教授 (00225195)
水口 一 岡山大学, 大学病院, 講師 (30325097)
三木 春奈 岡山大学, 医歯薬学域, 助教 (60739902)
小山 絵理 岡山大学, 大学病院, 医員 (60779437)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 口腔機能低下 / 低栄養 / 筋電図 / フレイル / 咀嚼機能 / オーラルフレイル / サルコペニア / ACTN3遺伝子 / 舌機能低下 / 遺伝子多型 / ACTN遺伝子 / 咀嚼機能低下 / 機械学習 / 評価 / 早期発見 |
Outline of Research at the Start |
口腔機能の低下による低栄養は,全身の筋力低下につながる。口腔機能の低下を早期発見し,早期に改善できれば,要介護状態への転落を遅延することができると考えられる。そのためには,口腔機能の低下を初期段階で妥当性高く,簡便に検出できる手法,基準が必要となる。 そこで,口腔機能の一部である咀嚼機能の初期低下を簡便に精度高く検出する手法を,ワイヤレス筋電計によって得られた実際の食事時の筋電図データから解明する。この際,残存歯数,舌の巧緻性,認知機能等の既存の咀嚼機能低下関連因子を交絡因子として考慮し,咀嚼機能低下をきたすハイリスク高齢者に対して,早期発見システムの構築を行ない超高齢社会のニーズに応えたい。
|
Outline of Final Research Achievements |
The purpose of this study was to clarify a method to easily and accurately detect a decline in masticatory function from electromyogram data obtained during meals. However, due to restrictions on contact with the elderly caused by the COVID-19 pandemic, it was difficult to conduct the originally planned clinical research on the elderly. Therefore, we focused on a method of analyzing and classifying electromyogram data obtained during various mandibular movements, which are oral functions similar to chewing movements, using machine learning, and examined the extent to which machine learning can discriminate electromyogram data obtained during movements similar to chewing movements. The results showed that the machine learning-based classification system had high accuracy in distinguishing between clenching and non-clenching movements using masseter muscle EMG.
|
Academic Significance and Societal Importance of the Research Achievements |
要介護高齢者の増大に対して,要介護状態の発症を遅らせ,健康寿命を延伸することが強く望まれている。近年,フレイルが高齢者の自立喪失の有意なリスク因子であると報告された。フレイルサイクルの一端に口腔機能,特に咀嚼嚥下機能の低下による低栄養がある。そこで,口腔機能低下を早期に発見し,早期に口腔機能,栄養状態の改善を図ることができれば,高齢者の要介護状態への転落を遅延できると考えている。 今回,口腔機能運動を咬筋筋活動から識別できたことは,将来的に口腔機能が維持された症例と低下している症例を筋電図検査から早期発見できる新たなスキームにつながる可能性を有している。
|