Project/Area Number |
21K11207
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 59010:Rehabilitation science-related
|
Research Institution | Kagawa National College of Technology |
Principal Investigator |
Onishi Akinari 香川高等専門学校, 電子システム工学科, 講師 (20747969)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | 脳波 / 車いす / 自律走行 / P300 / Brain-computer interface / Brain-machine interface / BMI / 電動車いす / BCI / 車椅子 |
Outline of Research at the Start |
ブレイン・マシン・インタフェース(BMI)は脳信号を電動車いすの制御命令などに変換するインタフェースである.これまでのBMIシステムではBMI操作画面のパネルと機器制御命令が一対一に対応づけられてきた.しかし自律走行車いすなどの最先端機器を制御する際に単純な対応付けでは自由に制御することが難しいため,操作機器や状況に最適なBMI操作画面を自動で提供するのが望ましい.本研究では機械学習や独自開発したニューラルネットワークを応用し,自律走行車いすの状況に応じて最適なBMI操作画面を提供する手法について提案し,その効果を明らかにすることを目的とする.
|
Outline of Final Research Achievements |
Brain-computer interface (BCI) or brain-machine interface (BMI) can decode our brain signals into control commands for, e.g., electric wheelchair. Previous BMI application studies focused only on a specific device. To be more practical, it will be preferable if the BMI could control autonomous wheelchair in addition to the varieties of devices that are located near the user. This study developed a BMI system that can control autonomous wheelchair by designating goal of a 2D map. In addition, household appliances near the user is automatically installed to the BMI by pairing with ESP32 via Bluetooth. I successfully controlled the BMI so that the autonomous wheelchair moved to a next room, and successfully turned a desk light on via the BMI simultaneously. Furthermore, appending and removing household appliances to the BMI stimulator does not influence the accuracy of the BMI, keeping almost 100% classification accuracy.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究を通して脳波で目的地を指定する新たな方法を提案した.この方法と自律走行技術を融合させることで,脳波で目的地を入力してそこまで自律走行することを可能とした. また,P300 BMIの刺激提示器を訓練時から変化させた場合の影響について調べた.その結果,文字を入れ替えるなどの変更の場合,刺激提示画面を訓練時から変更しても大きな影響を受けずに制御できることが分かった.また,従来の灰/白刺激よりもスマイリーを命令の上に描画する形式のほうが高い精度が得られたため,電動車いすや家電制御にはスマイリーを用いた刺激提示器のほうが適していることが分かった.
|