• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Time-Space Re-configurable Flash Computations

Research Project

Project/Area Number 21K11809
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60040:Computer system-related
Research InstitutionNara Institute of Science and Technology

Principal Investigator

ZHANG Renyuan  奈良先端科学技術大学院大学, 先端科学技術研究科, 准教授 (00709131)

Co-Investigator(Kenkyū-buntansha) 木村 睦  奈良先端科学技術大学院大学, 先端科学技術研究科, 客員教授 (60368032)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsapproximate computing / Neuromorphic circuits / stochastic computing / low power / artificial intelligence / スパイキングニューラルネットワーク / 確率的学習 / Non-deterministic / bisection neural network / re-configurability / efficiency / Continuous domain / parameter reduction / 確率計算 / CGRA / スパイクベース計算
Outline of Research at the Start

本研究では、従来のデジタル厳密計算基盤からAI向け超並列曖昧計算基盤まで対応できる時・空再構成可能な演算機構の基礎研究を行う。空間軸再構成に対して独創的な二分木ニューラルネットワークにより製造後任意に解体・組立できる演算器アレイを構築する。時間軸再構成に対して非決定論的計測に基づく確率的スパイクベース計算方式を創出する。精度の制御が可能な仕組みを導入し、両者の一体化を進める。最終には精度を調整できる無駄のない厳密・非厳密混合計算基盤の実現を目指す。さらに、メムキャパシタ等新機能デバイス実装技術を加えた、開発される計算機構の小型化を探索対象とする。

Outline of Final Research Achievements

The approximate computing architectures are developed in this project, which are re-configurable in temporal or spatial domain. By using the proposed technologies, the hardware (HW) costs are greatly reduced with reasonable computing accuracy. For temporal re-configurability, a series of neuromorphic computing platforms on the basis of our original topology named “DiaNet” are proposed and verified for artificial neural networks (ANNs). From various validations, the proposed architectures reduce the use of HW resources up to 95% with similar quality of service as conventional works. For spatial reconfigurable computing architectures, the asynchronous stochastic computing (ASC) methodology is proposed, implemented, and validated by various arithmetic calculations. The ASC circuits are found superior to synchronous SC on hardware efficiency and speed with similar accuracy. Moreover, the ASC platform offers rich re-configurability to trade off performance and cost post silicon.

Academic Significance and Societal Importance of the Research Achievements

The technologies developed in this project are found as promising candidates of post-Moore soft computing trends for accelerating the artificial intelligence tasks. This work explores the up limit of approximate computing and reasonable scenarios for it by cutting off a great processing energy.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (23 results)

All 2024 2023 2022 2021

All Journal Article (7 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 7 results) Presentation (16 results) (of which Int'l Joint Research: 15 results)

  • [Journal Article] Extremely Energy-Efficient Non-Linear Function Approximation Framework Using Stochastic Superconductor Devices2024

    • Author(s)
      Chen Olivia、Zhang Renyuan、Luo Wenhui、Wang Yanzhi、Yoshikawa Nobuyuki
    • Journal Title

      IEEE Transactions on Emerging Topics in Computing

      Volume: Early access Issue: 4 Pages: 1-12

    • DOI

      10.1109/tetc.2023.3330979

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Compressed Spiking Neural Network Onto a Memcapacitive In-Memory Computing Array2024

    • Author(s)
      Oshio Reon、Sugahara Takuya、Sawada Atsushi、Kimura Mutsumi、Zhang Renyuan、Nakashima Yasuhiko
    • Journal Title

      IEEE Micro

      Volume: 44 Issue: 1 Pages: 8-16

    • DOI

      10.1109/mm.2023.3285529

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Bisection Neural Network Toward Reconfigurable Hardware Implementation2022

    • Author(s)
      Chen Yan、Zhang Renyuan、Kan Yirong、Yang Sa、Nakashima Yasuhiko
    • Journal Title

      IEEE Transactions on Neural Networks and Learning Systems

      Volume: Early Access Issue: 3 Pages: 1-11

    • DOI

      10.1109/tnnls.2022.3195821

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] MuGRA: A Scalable Multi-Grained Reconfigurable Accelerator Powered by Elastic Neural Network2022

    • Author(s)
      Kan Yirong、Wu Man、Zhang Renyuan、Nakashima Yasuhiko
    • Journal Title

      IEEE Transactions on Circuits and Systems I: Regular Papers

      Volume: 69 Issue: 1 Pages: 258-271

    • DOI

      10.1109/tcsi.2021.3099034

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Feasibility Study of Multi-Domain Stochastic Computing Circuit2021

    • Author(s)
      ERLINA Tati、ZHANG Renyuan、NAKASHIMA Yasuhiko
    • Journal Title

      IEICE Transactions on Electronics

      Volume: E104.C Issue: 5 Pages: 153-163

    • DOI

      10.1587/transele.2020ECP5015

    • NAID

      130008032894

    • ISSN
      0916-8524, 1745-1353
    • Year and Date
      2021-05-01
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] DiaNet: An elastic neural network for effectively re-configurable implementation2021

    • Author(s)
      Wu Man、Kan Yirong、Erlina Tati、Zhang Renyuan、Nakashima Yasuhiko
    • Journal Title

      Neurocomputing

      Volume: 464 Pages: 242-251

    • DOI

      10.1016/j.neucom.2021.08.059

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM2021

    • Author(s)
      Nguyen Van-Tinh、Trinh Quang-Kien、Zhang Renyuan、Nakashima Yasuhiko
    • Journal Title

      IEEE Access

      Volume: 9 Pages: 151373-151385

    • DOI

      10.1109/access.2021.3125685

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] A Fully-Parallel Reconfigurable Spiking Neural Network Accelerator with Structured Sparse Connections2024

    • Author(s)
      Mingyang Li, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima
    • Organizer
      IEEE International Symposium on Circuits & Systems
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Power-Efficient Acceleration of GCNs on Coarse-Grained Linear Arrays2024

    • Author(s)
      Dohyun Kim, Koki Asahina, Yirong Kan, Renyuan Zhang and Yasuhiko Nakashima
    • Organizer
      IEEE Symposium on Low-Power and High-Speed Chips
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Trainig Efficient Stochastic Computing Neural Networks Using One-bit Unipolar Encoding2024

    • Author(s)
      B.Golbabaei, Y.Kan, R.Zhang, and Y.Nakashima
    • Organizer
      The 12th RIEC International Symposium on Brain Functions and Brain Computer
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Stochastic Encoding Approach for Robust Brain-Inspired Hyperdimensional Computing2024

    • Author(s)
      H.Tang, Y.Kan, R.Zhang, and Y.Nakashima
    • Organizer
      The 12th RIEC International Symposium on Brain Functions and Brain Computer
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Training a General Spiking Neural Network with Improved Efficiency and Minimum Latency2023

    • Author(s)
      Yunpeng Yao, Man Wu, Zheng Chen, Renyuan Zhang
    • Organizer
      Proceedings of the 15th Asian Conference on Machine Learning
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Energy-efficient 3D Convolution using Interposed Memory Accelerator eXtension 2 for Medical Image Processing2023

    • Author(s)
      Ren Imamura, Zhu Guangxian, Sang Duong Thi, Hoai Luan Pham, Renyuan Zhang, and Yasuhiko Nakashima
    • Organizer
      MICAD
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Non-Deterministic Training Approach for Memory-Efficient Stochastic Neural Networks2023

    • Author(s)
      Babak Gol Babaei, Guangxian Zhu, Yirong Kan, Zhang Renyuan, Yasuhiko Nakashima
    • Organizer
      IEEE International System-On-Chip Conference (SOCC2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] An Ultra-Compact Calculation Unit with Temporal-Spatial Re-configurability2023

    • Author(s)
      Guangxian Zhu, Yirong Kan, Renyuan Zhang and Yasuhiko Nakashima
    • Organizer
      IEEE Interregional NEWCAS
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Automatic Sleep Staging via Frequency-Wise Spiking Neural Networks2022

    • Author(s)
      Haohui Jia, Ziwei Yang, Pei Gao, Man Wu, Chen Li, Yirong Kan, Renyuan Zhang
    • Organizer
      IEEE International Conference on Bioinformatics and Biomedicine, (BIBM)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multi-Tier Platform for Cognizing Massive Electroencephalogram2022

    • Author(s)
      Zheng Chen, Lingwei Zhu, Ziwei Yang, and Renyuan Zhang
    • Organizer
      International Joint Conference on Artificial Intelligence, (IJCAI)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Stochastic Coding Method of EEG Signals for Sleep Stage Classification2022

    • Author(s)
      Guangxian Zhu, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima
    • Organizer
      IEEE International System-on-Chip Conference, (SOCC)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Training Deep Spiking Neural Networks with Ternary Weights2022

    • Author(s)
      Man Wu, Yirong Kan, Renyuan Zhang, and Yasuhiko Nakashima
    • Organizer
      IEEE International System-on-Chip Conference, (SOCC)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] An Accurate and Compact Hyperbolic Tangent and Sigmoid Computation Based Stochastic Logic2022

    • Author(s)
      Van-Tinh Nguyen, Tieu-Khanh Luong, Emanuel Popovici, Quang-Kien Trinh, Renyuan Zhang, Yasuhiko Nakashima
    • Organizer
      IEEE International Midwest Symposium on Circuits and Systems, (MWSCAS)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Training Low-Latency Spiking Neural Network through Knowledge Distillation2021

    • Author(s)
      Sugahara Takuya, Renyuan Zhang, and Yasuhiko Nakashima
    • Organizer
      IEEE Symposium on Low-Power and High-Speed Chips
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] An Accurate and Compact Hyperbolic Tangent and Sigmoid Computation Based Stochastic Logic2021

    • Author(s)
      Van Tinh NGUYEN, T. -K. Luong, E. Popovici, Q. -K. Trinh, Renyuan Zhang and Yasuhiko Nakashima
    • Organizer
      IEEE International Midwest Symposium on Circuits & Systems
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Ternarizing Deep Spiking Neural Network2021

    • Author(s)
      Man Wu, Yirong Kan, Van_Tinh Nguyen, Renyuan Zhang, Yasuhiko Nakashima
    • Organizer
      信学技報
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi