Project/Area Number |
21K12032
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61030:Intelligent informatics-related
|
Research Institution | Yokohama City University (2023) Kyushu University (2021-2022) |
Principal Investigator |
Daiki Suehiro 横浜市立大学, データサイエンス学部, 准教授 (20786967)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | データサンプリング / オンライン予測 / ノイズあり機械学習 / 機械学習 / 組み合わせ最適化 / ノイズラベル / ノイズデータ |
Outline of Research at the Start |
本研究では,機械学習分野におけるデータサンプリング問題に対し,統合的な定式化と理論解析の枠組みを与えることを目指す.データサンプリングは,全てのサンプルを学習に用いるのではなく,可能な限り「望ましいデータ」のみをサンプリングするタスクのことで, 多くのドメインで幅広く考えられているタスクである.従来は,ドメイン,タスクの細かい特性に応じたアドホックな定式化や手法が多く,汎用性や理論解析に関する議論が欠如している.本研究では, ドメイン,タスク依存の現状を打破するため,データサンプリング問題について(1)統合的な枠組みの開発,(2)理論性能保証,(3)実応用の開拓を行う.
|
Outline of Final Research Achievements |
For various data sampling problem in machine learning, I designed a unified formulation and gave theoretical analyses based on online prediction theory. More precisely, for the pseudo labeling problem in Learning from Label proportions and data selection problem in learning with noisy labels, I proposed a unified framework for adaptively sampling good data according to the learning behavior. For both problems, I proved the proposed algorithms work effectively in theory and in practice.
|
Academic Significance and Societal Importance of the Research Achievements |
データから学習を行う機械学習は人工知能の中核をなす技術である.一般に,データに付与される「正解」は誤り(ノイズ)が含まれていたり,全てのデータに付与されていなかったり,不完全なものであることが多い.このようなデータから適切な学習を行うためには,データ集合の中から適切な情報だけを取り出すサンプリングが重要な役割を担う.しかし,サンプリングはデータの性質やタスクに応じたアドホックな定式化や手法が多く,汎用性や理論解析に関する議論が欠如していた.本研究ではデータやタスク依存の現状を打破する統合的な枠組みと理論性能保証の指針を与え,サンプリング技術ひいては機械学習技術の発展に大きく寄与するものである.
|