• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data

Research Project

Project/Area Number 21K12034
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionThe University of Aizu

Principal Investigator

Rage Uday・Kiran  会津大学, コンピュータ理工学部, 准教授 (20874324)

Co-Investigator(Kenkyū-buntansha) 是津 耕司  国立研究開発法人情報通信研究機構, ユニバーサルコミュニケーション研究所統合ビッグデータ研究センター, 研究センター長 (40415857)
Project Period (FY) 2021-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
KeywordsBig data / high utility patterns / spatial information / data mining / Pattern mining / Air pollution analytics
Outline of Research at the Start

“Mining time series data” is one of the top-10 challenges in data mining. This research aims to tackle this challenging problem of great importance by proposing a mathematical model to uncover periodic spatial patterns in irregular spatiotemporal big data. We will deliver a mathematical model and software programs to uncover interesting patterns in spatiotemporal big data. Our deliverables will be “open-sourced” to foster R&D on data mining.

Outline of Annual Research Achievements

We have developed three novel pattern mining algorithms to discover useful patterns in the air pollution data by modeling it as uncertain, fuzzy, and certain data. The discovered patterns were described in the publications.

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

The work is going smoothly by collecting the data of 5+ years of air pollution data. The co-researcher from NICT helped us in speedup the task smoothly. The portion of the work carried in the previous year can be found at https://github.com/UdayLab/PAMI/blob/main/notebooks/knowledgeDiscoveryInData.ipynb

Strategy for Future Research Activity

This year we plan to develop a real-world application for the air pollution data analytics. It involves developing a data warehouse and our algorithm to uncover hidden patterns in global air pollution data.

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (11 results)

All 2023 2022 2021

All Journal Article (7 results) (of which Int'l Joint Research: 5 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 3 results) Book (1 results)

  • [Journal Article] Discovering Geo-referenced Frequent Patterns in the Uncertain Geo-referenced Transactional Databases2023

    • Author(s)
      Likhitha Palla,Veena Pamalla, Rage Uday Kiran, Zettsu Koji
    • Journal Title

      PAKDD

      Volume: 1 Pages: 29-41

    • DOI

      10.1007/978-3-031-33380-4_3

    • ISBN
      9783031333798, 9783031333804
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Journal Article] A Novel Explainable Link Forecasting Framework for the Temporal Knowledge Graphs Using Time-Relaxed Cyclic and?Acyclic Rules2023

    • Author(s)
      Rage Uday Kiran, Maharana Abinash, Polepalli Krishna Reddy
    • Journal Title

      PAKDD

      Volume: 1 Pages: 264-275

    • DOI

      10.1007/978-3-031-33374-3_21

    • ISBN
      9783031333736, 9783031333743
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Journal Article] Discovering Fuzzy Partial Periodic Patterns in Quantitative Irregular Multiple Time Series2023

    • Author(s)
      Veena Pamalla, Likhitha Palla, Kiran R. Uday, Luna Jose Maria, Fournier-Viger Philippe, Zettsu Koji
    • Journal Title

      IEEE FUZZ

      Volume: 1 Pages: 1-7

    • DOI

      10.1109/fuzz52849.2023.10309773

    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Journal Article] Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases Using Set Complements2023

    • Author(s)
      Veena Pamalla, Sreepada Tarun, Kiran Rage Uday, Dao Minh-Son, Zettsu Koji, Watanobe Yutaka, Zhang Ji
    • Journal Title

      IEEE Access

      Volume: 11 Pages: 118676-118688

    • DOI

      10.1109/access.2023.3326419

    • Related Report
      2023 Research-status Report
    • Open Access / Int'l Joint Research
  • [Journal Article] HDSHUI-miner: a novel algorithm for discovering spatial high-utility itemsets in high-dimensional spatiotemporal databases2023

    • Author(s)
      Uday Kiran Rage、Veena Pamalla、Ravikumar Penugonda、Venus Vikranth Raj Bathala、Dao Minh-Son、Zettsu Koji、Bommisetti Sai Chithra
    • Journal Title

      Applied Intelligence

      Volume: 53 Issue: 8 Pages: 8536-8561

    • DOI

      10.1007/s10489-022-04436-w

    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Journal Article] Efficient Discovery of Partial Periodic Patterns in Large Temporal Databases2022

    • Author(s)
      Kiran Rage Uday、Veena Pamalla、Ravikumar Penugonda、Saideep Chennupati、Zettsu Koji、Shang Haichuan、Toyoda Masashi、Kitsuregawa Masaru、Reddy P. Krishna
    • Journal Title

      Electronics

      Volume: 11 Issue: 10 Pages: 1523-1523

    • DOI

      10.3390/electronics11101523

    • Related Report
      2021 Research-status Report
  • [Journal Article] Efficient Discovery of Periodic-Frequent Patterns in Columnar Temporal Databases2021

    • Author(s)
      Ravikumar Penugonda、Likhitha Palla、Raj Bathala Venus Vikranth、Kiran Rage Uday、Watanobe Yutaka、Zettsu Koji
    • Journal Title

      Electronics

      Volume: 10 Issue: 12 Pages: 1478-1478

    • DOI

      10.3390/electronics10121478

    • Related Report
      2021 Research-status Report
  • [Presentation] Towards Efficient Discovery of Partial Periodic Patterns in Columnar Temporal Databases2022

    • Author(s)
      Penugonda Ravikumar, Bathala Venus Vikranth Raj, Palla Likhitha, Rage Uday Kiran, Yutaka Watanobe, Sadanori Ito, Koji Zettsu, Masashi Toyoda:
    • Organizer
      ACIIDS
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Discovering Fuzzy Geo-referenced Periodic-Frequent Patterns in Geo-referenced Time Series Databases2022

    • Author(s)
      Pamalla Veena, Penugonda Ravikumar, Kundai Kwangwari, R. Uday Kiran, Kazuo Goda, Yutaka Watanobe, Koji Zettsu
    • Organizer
      IEEE FUZZ
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] UPFP-growth++: An Efficient Algorithm to Find Periodic-Frequent Patterns in Uncertain Temporal Databases.2022

    • Author(s)
      Palla Likhitha, Rage Veena, Rage Uday Kiran, Koji Zettsu, Masashi Toyoda, Philippe Fournier-Viger:
    • Organizer
      ICONIP
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Book] Periodic Pattern Mining Theory, Algorithms, and Applications2021

    • Author(s)
      Rage Uday Kiran, Philippe Fournier-Viger, Jose Maria Luna, Jerry Chun-Wei Lin, Anirban Mondal
    • Total Pages
      263
    • Publisher
      Springer
    • ISBN
      9789811639630
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi