• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Prototype classification models based on fuzzy max functions and their learning using mathematical optimization techniques

Research Project

Project/Area Number 21K12062
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61040:Soft computing-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka Prefecture University (2021)

Principal Investigator

楠木 祥文  大阪公立大学, 大学院情報学研究科, 講師 (30588322)

Project Period (FY) 2021-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywords機械学習 / プロトタイプ分類モデル / ファジィ最大化関数 / 数理最適化 / ファジィ最大値関数 / プロトタイプ分類
Outline of Research at the Start

科学的な意思決定において,その対象を数理的にモデリングすることは必要不可欠である.近年,大量のデータと汎用的数理モデルを用いた機械学習に基づくモデリングが注目されている.意思決定のためのモデリング手法として機械学習を考えたとき,意思決定者がその過程を理解し点検・修正できるように,学習された数理モデルの振る舞いが説明可能であること(モデルの透明性) と,学習の原理が明瞭で合理的であること(モデリングの透明性) が学習手法に期待される.本研究課題では,二つの透明性を考慮して,プロトタイプ分類モデルと数理最適化に基づく学習手法を開発する.

Outline of Annual Research Achievements

本件研究の目的は,モデリング過程とモデル自身の両方の透明性を備え,かつ,高い汎化性能をもつ機械学習手法を開発することであり,そのために,機械学習モデルの一つであるプロトタイプ分類モデルを研究している.2022年度で修正した,学習のための最適化問題(マージン最大化問題)に基づき,2023年度では,学習アルゴリズムを導出した.過去の手法では,制約条件に凹関数を含む最適化問題に対して,逐次線形化手法(Convex-Concave Procedure)を適用することで,学習アルゴリズムを導出していた.これに対して,新手法では,凹関数が目的関数のみにあらわれるように,最適化問題を変形し,逐次線形化手法を適用することで,学習アルゴリズムをより簡単にすることができた.さらに,その問題の目的関数にk-means法と同等の目的関数を加えることで,データの分布を表現すると同時にクラスを識別するプロトタイプ分類モデルを学習できるように改良した.修正前の手法ではプロトタイプが期待されない場所に配置されることがあったが,修正後の提案手法ではその問題が解消されていることを2次元の人工データで確認した.また,素朴なプロトタイプ分類モデルの学習手法(GLVQとclass-wise k-means)と比較して,提案手法はより分類性能の高いモデルを学習できることを示した.これらの研究結果を国際会議2件で発表した.また,2022年度で提案した,外れ値にロバストなk-means法の効果を様々な人工データで検証した.さらに,それにファジィクラスタリングのアイディアを導入することで,ロバストファジィk-means法を導出し,2次元平面上の人工データでその効果を確認した.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

本研究課題ではプロトタイプ分類モデルのファジィ化を計画していたが,2022年度で明らかになった問題点の修正に起因して,複数の側面で提案手法の改良を行った.そのため,本来の目的であるファジィ化が後回しとなった.しかし,その改良によって,提案手法の特徴がより明確になった.

Strategy for Future Research Activity

2023年度の研究成果をまとめて雑誌に投稿する.また,提案手法の解析や修正も適宜行い,その結果を数値実験で評価し,その結果を学会等で発表する.研究計画で挙げている,距離関数がパラメータ化されたプロトタイプ分類モデルの学習についても考察する.

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (9 results)

All 2023 2022 2021

All Presentation (9 results) (of which Int'l Joint Research: 2 results)

  • [Presentation] Maximum-Margin Nearest Prototype Classifiers with the Sum-over-others Loss Function and a Performance Evaluation2023

    • Author(s)
      Yoshifumi Kusunoki
    • Organizer
      The Tenth International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Revised Optimization Algorithm for Maximum-Margin Nearest Prototype Classifier2023

    • Author(s)
      Yoshifumi Kusunoki
    • Organizer
      The 20th World Congress of the International Fuzzy Systems Association (IFSA 2023)
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] DCアルゴリズムを用いた距離の累乗根を最小化するロバストk-Meansの導出2023

    • Author(s)
      楠木 祥文
    • Organizer
      第67回システム制御情報学会研究発表講演会
    • Related Report
      2023 Research-status Report
  • [Presentation] データから生成される凸集合への射影を用いたクラス分類2022

    • Author(s)
      楠木祥文
    • Organizer
      第66回システム制御情報学会 研究発表講演会
    • Related Report
      2022 Research-status Report
  • [Presentation] 2次制約正則化を導入したプロトタイプ分類器の学習に対するマージン最大化モデル2022

    • Author(s)
      大西 敦也, 楠木 祥文, 巽 啓司
    • Organizer
      第49回知能システムシンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] Low-rank representaionを用いた非線形データ解析手法の開発2022

    • Author(s)
      小島克彦, 楠木祥文, 巽啓司
    • Organizer
      第49回知能システムシンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] エントロピー正則化関数を導入したプロトタイプ分類器に対するマージン最大化モデル2021

    • Author(s)
      大西 敦也, 楠木 祥文, 巽 啓司
    • Organizer
      インテリジェント・システム・シンポジウム2021
    • Related Report
      2021 Research-status Report
  • [Presentation] 低ランクモデルを用いたtransductive学習と画像分類への応用2021

    • Author(s)
      小島克彦, 楠木祥文, 巽啓司
    • Organizer
      第64回自動制御連合講演会
    • Related Report
      2021 Research-status Report
  • [Presentation] Transductive Learning Based on Low-Rank Representation with Convex Constraints2021

    • Author(s)
      Yoshifumi Kusunoki, Katsuhiko Kojima, Keiji Tatsumi
    • Organizer
      IUKM 2022: Integrated Uncertainty in Knowledge Modelling and Decision Making
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi