Project/Area Number |
21K12192
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 62040:Entertainment and game informatics-related
|
Research Institution | Kyushu Institute of Technology |
Principal Investigator |
Masaki Oshita 九州工業大学, 大学院情報工学研究院, 教授 (20363400)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 動作生成 / 深層学習 / 遷移動作 / 動作遷移 / 仮想人間 / コンピュータゲーム |
Outline of Research at the Start |
現在、コンピュータゲームなどの用途では、あらかじめモーションキャプチャ機器等を用いて作成された短い基本動作データを順番に再生することでキャラクタの連続的な動作を実現する方法が一般的に用いられている。この方法では、あらかじめ準備された動作間・タイミングでの動作遷移しか行うことができず、現実の人間のように現在の動作から次の動作への急激な動作遷移を含むような即応的な動作生成は実現できない。本研究で開発する手法では、高レベルの足や重心の軌道を生成する機械学習モデルと、低レベルの全身動作生成のための機械学習モデルを組み合わせることで、連続的・即応的な動作生成を実現する。
|
Outline of Final Research Achievements |
In this research project, we worked on the development of a method for generating transitional motions that connect between input motions in order to realize continuous and immediate movement generation for virtual humans. We worked on the development of methods using two approaches: a method for motion generation using foot and hip trajectory data as inputs and outputs for deep learning, and a method for motion generation using posture and motion data as inputs and outputs for deep learning models. Although we were unable to achieve an effective method compared to conventional methods, we developed a crowd simulation method for navigating virtual humans using deep learning with surrounding situation images as input and output.
|
Academic Significance and Societal Importance of the Research Achievements |
深層学習を用いて遷移動作を生成する方法として、研究開発当初に計画していた足や腰の軌道データを深層学習の入出力として動作生成を行う手法と、姿勢・動作データを深層学習モデルの入出力として動作生成を行う方法の、両方のアプローチを示した。また、本研究で開発した深層学習による移動制御手法は、コンピュータアニメーションやメタバースなどでの、群衆のアニメーション生成への応用が期待される。
|