Project/Area Number |
21K12244
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 63020:Radiation influence-related
|
Research Institution | Tokyo University of Technology |
Principal Investigator |
Nishi Ryotaro 東京工科大学, 応用生物学部, 准教授 (80446525)
|
Co-Investigator(Kenkyū-buntansha) |
逆井 良 金沢医科大学, 医学部, 准教授 (10549950)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | DNA修復 / 相同組換え修復 / 核内ミオシン / DNA二本鎖切断 / DNA二本鎖切断修復 / 相同組換え / クロマチン動態 |
Outline of Research at the Start |
電離放射線などにより生じるDNA二本鎖切断(DNA double-strand break: DSB)は最も細胞毒性の高いDNA損傷の一つであり、適切なDSB修復はゲノムDNAの恒常性維持に必須である。これまでにDSB修復の基本的な分子機構が解明されてきたが、DSBの修復には隣接する核内構造体によっても制御される特異的な機構が存在する。このことは、ヒト細胞核内ではDSB修復は画一的な反応ではなく、DSBが生じた環境によって制御される多様性に富む反応であることを示唆するが、未だその全容は不明である。本研究では、多様なDSB修復のなかでも重要なサブパスウェイを同定し、解明することを目的とする。
|
Outline of Final Research Achievements |
DNA double-strand break (DSB) that is caused by ionizing radiation etc. is one of the most deleterious types of DNA damage. In human cells, DSBs are mainly repaired by either homologous recombination or non-homologous end joining. Since MRN (MRE11-NBS1-RAD50) complex regulates pathway choice, initiation of homologous recombination, and DSB responses, revealing regulatory mechanism of MRN complex is mandatory to understand DSB repair. This research aimed to unveil regulatory mechanism of MRN complex by characterizing newly identified MRN complex interactor, nuclear myosin. We found that nuclear myosin interacted with MRN complex in nuclei and mainly interacted with MRE11. In addition, we also found that nuclear myosin facilitated homologous recombination.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでにDSB修復の基本的な分子機構が解明されてきた。近年ではDSB修復はDSBが生じたゲノム上の転写活性や、隣接する核内構造体等によって複雑な制御を受けることが明らかにされつつあり、ヒト細胞核内ではDSB修復は画一的な反応ではなく、複数のサブパスウェイから構成されることが示唆されている。本研究では、正確性の高いDSB修復機構である相同組換え修復に促進的に機能する因子を新たに同定し、その細胞生存における重要性を明らかにした。このことは、ゲノム安定性維持という生命の根幹をなす現象に新たな視点を加えるだけでなく、遺伝子領域におけるゲノム編集の正確な効率化に利用することも可能であると考えられる。
|