• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Content-based image retrieval of 3D brain MRI images focusing on disease characteristics for diagnostic support

Research Project

Project/Area Number 21K12656
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90110:Biomedical engineering-related
Research InstitutionHosei University

Principal Investigator

Iyatomi Hitoshi  法政大学, 理工学部, 教授 (10386336)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords類似症例検索 / 脳MRI / 診断支援 / 機械学習 / 低次元表現 / 次元削減 / 画像検索 / domain adaptation / CBIR / MRI
Outline of Research at the Start

診断支援のための3次元脳MRI画像の【病徴に着目した】類似症例検索(CBIR)技術の開発
本課題は、無数の疾患の可能性を考慮しなければならない現場の脳神経科医への診断支援、稀な病気を含めた早期発見などを目的に、MRI画像の病気特徴に基づく類似症例検索技術の開発を行う。本テーマは米国Johns Hopkins大の現場の医師・研究者からの依頼により始まった、大変有望かつ波及効果の大きい研究である。

Outline of Final Research Achievements

In order to develop a similar case retrieval (CBIR) technology focusing on disease features in 3D brain MR images for the purpose of assisting diagnosis, (1) the development of a high-precision skull stripping technique independent of variations in imaging conditions and individual differences. and (2) the acquisition of an excellent low-dimensional representation of brain MR images for CBIR were carried out in close collaboration with Johns Hopkins University, and were able to achieve results beyond our initial expectations.
For (1), we developed a technology with an original subject posture correction mechanism that achieves the world's highest level of speed and accuracy with a small amount of training data. For (2), a number of results were obtained, including harmonization techniques for data acquired at multiple sites and techniques for acquiring low-dimensional representations with high interpretability while retaining disease characteristics.

Academic Significance and Societal Importance of the Research Achievements

脳MR画像の類似画像検索(CBIR)技術は、先端の医療現場から求められている技術であり、単なる診断支援にとどまらず、医師にまれな病気の気づきを促す意義深い研究である。
またこの技術は他の画像診断技術にも転用可能である。本研究は多くの要素技術から構成され、病徴データを保持しながらのデータの低次元化、注目部位の抽出や分割、多拠点データの調和、モデルの説明性の獲得などは、昨今の機械学習技術の本質そのものである。本技術実現の過程で得られる技術は、幅広いAI技術の進歩にも貢献する。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (15 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Int'l Joint Research: 6 results,  Peer Reviewed: 6 results,  Open Access: 2 results) Presentation (7 results) Remarks (1 results)

  • [Int'l Joint Research] Johns Hopkins University(米国)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Isometric feature embedding for content-based image retrieval2024

    • Author(s)
      Hayato Muraki, Kei Nishimaki, Shuya Tobari, Kenichi Oishi, and Hitoshi Iyatomi
    • Journal Title

      Proc. 58th Annual Conference on Information Sciences and Systems (CISS2024)

      Volume: - Pages: 1-6

    • DOI

      10.1109/ciss59072.2024.10480174

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] PCSS: Skull Stripping with Posture Correction from 3D Brain MRI for Diverse Imaging Environment2023

    • Author(s)
      Kei Nishimaki, Kumpei Ikuta, Shingo Fujiyama, Kenichi Oishi and Hitoshi Iyatomi
    • Journal Title

      IEEE Access

      Volume: 11 Pages: 116903-116918

    • DOI

      10.1109/access.2023.3326342

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Acquiring a low-dimensional, environment-independent representation of brain MR images for content-based image retrieval2023

    • Author(s)
      Shuya Tobari, Kenichi Oishi, Hitoshi Iyatomi
    • Journal Title

      Proc. IEEE System, Man and Cybernetics (IEEE SMC2023)

      Volume: - Pages: 5096-5101

    • DOI

      10.1109/smc53992.2023.10394176

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Loc-VAE: Learning Structurally Localized Representation from 3D Brain MR Images for Content-Based Image Retrieval2022

    • Author(s)
      Kei Nishimaki, Kumpei Ikuta, Yuto Onga, Hitoshi Iyatomi, Kenichi Oishi
    • Journal Title

      Proc. IEEE System, Man and Cybernetics (IEEE SMC2022)

      Volume: - Pages: 2433-2438

    • DOI

      10.1109/smc53654.2022.9945411

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Super-resolution for Brain MR Images from Significantly Small Amount of Training Data2022

    • Author(s)
      Kumpei Ikuta, Hitoshi Iyatomi, and Kenichi Oishi
    • Journal Title

      Proc. AAAI

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Disease-oriented image embedding with pseudo-scanner standardization for content-based image retrieval on 3D brain MRI2021

    • Author(s)
      Hayato Arai, Yuto Onga, Kumpei Ikuta, Yusuke Chayama, Hitoshi Iyatomi and Kenichi Oishi
    • Journal Title

      IEEE Access

      Volume: 9 Pages: 165326-165340

    • DOI

      10.1109/access.2021.3129105

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Latent Diffusion Modelを用いた脳MR画像のドメイン調和の評価2024

    • Author(s)
      池上宙、西牧慧、戸張柊也、彌冨仁
    • Organizer
      情報処理学会 第86回総合大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 指示文に基づく高品質脳MR画像生成手法の初期検討2024

    • Author(s)
      中津颯太、西牧慧、戸張柊也、彌冨仁
    • Organizer
      情報処理学会 第86回総合大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 脳MRI画像の体積情報を用いた類似症例検索の解釈性の実現2024

    • Author(s)
      佐野光奎、西牧慧、戸張柊也、彌冨仁
    • Organizer
      情報処理学会 第86回総合大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 3次元脳画像の類似症例検索実現に向けた高いデータ保存性を持つ低次元特徴表現の獲得2023

    • Author(s)
      村木隼人、彌冨 仁
    • Organizer
      情報処理学会 第85回総合大会
    • Related Report
      2022 Research-status Report
  • [Presentation] 3次元MR画像に2次元スライスを用いた類似症例検索のための低次元表現獲得の試み2023

    • Author(s)
      友重秀平、彌冨 仁
    • Organizer
      情報処理学会 第85回総合大会
    • Related Report
      2022 Research-status Report
  • [Presentation] 類似症例検索のための3次元脳MRI画像における解釈性の高い低次元表現の獲得2022

    • Author(s)
      西牧 慧,生田薫平,彌冨 仁
    • Organizer
      第84回 情報処理学会総合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] 戸張柊也,生田薫平,彌冨 仁2022

    • Author(s)
      類似症例検索を目的とした3次元脳MRI画像における撮像環境に不変な特徴表現の獲得
    • Organizer
      第84回 情報処理学会総合大会
    • Related Report
      2021 Research-status Report
  • [Remarks] 彌冨 仁研究室(法政大学理工学部 知的情報処理研究室)

    • URL

      https://iyatomi-lab.info/

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi