Project/Area Number |
21K12687
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 90120:Biomaterials-related
|
Research Institution | Kyushu University |
Principal Investigator |
Kobayashi Shingo 九州大学, 先導物質化学研究所, 特任准教授 (70625110)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 精密重合 / 定序性高分子 / regio選択的重合 / Grubbs触媒 / 開環メタセシス重合 / 血液適合性材料 / バイオマテリアル / 生体親和性材料 / 生体適合性高分子 / 精密高分子合成 / 高分子構造・物性 |
Outline of Research at the Start |
生体はタンパク質、核酸、多糖類などで構成された高分子複合体であり、例えば酵素が発現する極めて高い機能は、厳密に制御されたアミノ酸配列に基づく高次構造の発現と、分子内/分子間の特異的/非特異的相互作用の制御によって達成されている。一方、合成高分子では、モノマー配列の制御にかかる合成上の困難さに起因して、その配列の影響にまで注意を払った研究が行われることは稀である。 そこで本研究では、側鎖配列が制御されたモデル高分子の合成と、その生体適合性材料への応用研究を通じ、高分子材料-タンパク質-細胞間の相互作用について段階的に検討するとともに、高分子構造-生体適合性の相関性を明らかにすることを目的とする。
|
Outline of Final Research Achievements |
Novel polyolefins with controlled side-chain arrangements were synthesized, and the structure-function correlation was investigated to elucidate the mechanism of biocompatibility. Additionally, their potential application as anti-thrombogenic coating materials was explored. Five polymers with flexible polyethylene backbones and eight polymers with rigid cycloolefin polymer backbones were successfully synthesized. In both main chain structures, the polymers exhibited antithrombotic properties comparable to PMEA and demonstrated superior coating film stability. Solid-state NMR evaluations showed that polymers in which the polymer and water were more homogeneously miscible at biological temperatures exhibited higher antithrombotic properties. The obtained polymers were found to be useful as surface coating materials for extracorporeal membrane oxygenation (ECMO) devices.
|
Academic Significance and Societal Importance of the Research Achievements |
高分子材料が発現する生体適合性を制御するためには、高分子材料ー生体間相互作用の詳細を解明する必要がある。側鎖配列が制御された新規ポリオレフィンの構造-機能相関に関する本研究成果から、生体適合性高分子に必要な構造的・物性的特徴について理解を深めることができた。本研究で得たポリオレフィン系高分子は、疎水性が極めて高いにも関わらず高い抗血栓性を示し、優れた膜安定性をも示す。本研究成果は、従来の親水性・水溶性高分子に代わる新たな生体適合性材料の設計指針を示すものであり、その応用が期待されるとともに、医療分野における新しいバイオマテリアルの設計や医療デバイス開発、組織工学の進展に寄与することができる。
|