• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Automatic Classification of Neonatal Sleep-Wake States by Video Analysis

Research Project

Project/Area Number 21K12704
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90130:Medical systems-related
Research InstitutionMie University

Principal Investigator

Wakabayashi Tetsushi  三重大学, 工学研究科, 教授 (30240443)

Co-Investigator(Kenkyū-buntansha) 盛田 健人  三重大学, 工学研究科, 准教授 (40844626)
新小田 春美  福岡女学院看護大学, 看護学部, 教授 (70187558)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsパターン認識 / 医用画像処理 / 動画像解析 / 深層学習 / 睡眠 / 新生児 / NICU / 機械学習 / 動画 / 顔 / Brazelton / NBAS / 表情
Outline of Research at the Start

本研究では,1分ごとにBrazeltonのNBASに基づく睡眠覚醒状態のアノテーションが付与された新生児の動画を対象とし,動画から抽出された体の動きと表情の特徴を機械学習し,睡眠覚醒状態を非接触で自動分類する手法を提案する.特徴ベクトルにはオプティカルフローの累積ヒストグラムや時空間HOGV特徴,機械学習にはSVM,Random Forest や深層学習手法を用いて比較実験を行い,分類精度の高い手法を明らかにする.

Outline of Final Research Achievements

In this study, we proposed a method for automatically classifying the sleep-wake state of a child in a NICU in a non-contact manner using video. We compared a machine learning method using motion features obtained from optical flow and a deep learning method using 3DResNet for both videos showing the whole body and videos from which face regions were extracted. Furthermore, the results of the classification method using 3DResNet for videos with face regions extracted and the method using 3DResNet for videos of the entire body were integrated based on output probability after time series smoothing, yielding a classification accuracy of 0.611 and a Kappa score of 0.623.

Academic Significance and Societal Importance of the Research Achievements

機器によるバイタルデータ(眼球電位,筋電位,脳波,呼吸等)の測定により正確な睡眠覚醒状態を評価できることが報告されているが,新生児の行動観察に基づくNBASのStateとは一致せず,新生児への負担が大きいため長時間の連続測定は難しい.また,これまでにBrazeltonのNBASに基づく睡眠覚醒状態を継続的・客観的に自動分類する手法は存在しなかった.
本研究の成果により新生児や看護師に負担をかけずに継続的な観測が可能になり,看護師の主観に左右されない客観的な睡眠覚醒状態の調査ができるため,NICUの明暗環境と新生児睡眠覚醒状態の関係の大規模調査を可能にするという点で意義がある.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (6 results)

All 2024 2023 2022

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (4 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Automatic Classification of Sleep-wake States of Newborns Using Only Body and Face Videos2024

    • Author(s)
      Yuki Ito, Kento Morita, Asami Matsumoto, Harumi Shinkoda, Tetsushi Wakabayashi
    • Journal Title

      Journal of Advanced Computational Intelligence and Intelligent Informatics

      Volume: 28(4) Pages: 1-9

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Automatic Neonatal Alertness State Classification Based on Facial Expression Recognition2022

    • Author(s)
      Kento Morita, Nobu C. Shirai, Harumi Shinkoda, Asami Matsumoto, Yukari Noguchi, Masako Shiramizu, and Tetsushi Wakabayashi
    • Journal Title

      Journal of Advanced Computational Intelligence and Intelligent Informatics

      Volume: 26 Issue: 2 Pages: 188-195

    • DOI

      10.20965/jaciii.2022.p0188

    • ISSN
      1343-0130, 1883-8014
    • Year and Date
      2022-03-20
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Automatic Classification of Sleep-wake States of Newborns Using Automatically Extracted Facial Regions2023

    • Author(s)
      Yuki Ito, Kento Morita, Tetsushi Wakabayashi, Harumi Shinkoda, Asami Matsumoto
    • Organizer
      The 24th International Symposium on Intelligent Systems (ISIS2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 深層学習を用いた新生児の睡眠覚醒状態の自動分類2023

    • Author(s)
      伊藤 由樹, 盛田 健人, 新小田 春美, 松本 あさみ, 野口 ゆかり, 白水 雅子, 若林 哲史
    • Organizer
      第39回ファジィシステムシンポジウム(FSS2023)
    • Related Report
      2023 Annual Research Report
  • [Presentation] Automatic Estimation of Neonatal Sleep/Wake States in the NICU Using 3D CNN2022

    • Author(s)
      Yuki Ito, Kento Morita, Tetsushi Wakabayashi, Harumi Shinkoda, Asami Matsumoto, Yukari Noguchi and Masako Shiramizu
    • Organizer
      2022 World Automation Congress (WAC)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習を用いた新生児の睡眠覚醒状態の自動分類2022

    • Author(s)
      伊藤 由樹, 盛田 健人, 若林 哲史, 新小田 春美, 松本 あさみ, 野口 ゆかり, 白水 雅子
    • Organizer
      第38回 ファジィシステムシンポジウム(FSS2022)
    • Related Report
      2022 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi