• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

臨界型非線形楕円型方程式における解の集中現象の研究-余質量を伴う集中-

Research Project

Project/Area Number 21K13813
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionMuroran Institute of Technology

Principal Investigator

内免 大輔  室蘭工業大学, 大学院工学研究科, 准教授 (20783278)

Project Period (FY) 2021-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2025: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2024: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords集中と振動 / 集中現象 / 爆発解析 / 非線形楕円型方程式 / 変分法 / 非線形偏微分方程式 / Trudinger-Moser不等式 / 楕円型方程式 / 臨界問題
Outline of Research at the Start

本研究ではTrudinger-Moser型臨界半線形楕円型方程式の解の集中現象について解析を行う。具体的には,当該方程式が一般の有界領域において「余質量を伴う集中現象」を起こす符号変化解の列を持つことを証明する。このために,まずは比較的単純な状況として円盤領域上での詳しい解析を行う。ここで得られた知見を基に,最終的な目標である一般の有界領域での集中解の構成を,変分法や分岐理論を駆使して行う。

Outline of Annual Research Achievements

当該年度の研究では超臨界指数型非線形項を持つ半線形楕円型方程式の球対称正値解の集中現象についての研究を行った。特に,前年度までの研究によって,超臨界型の爆発解については,最大値まわりの第1の集中部分の漸近的な評価だけでは解全体の挙動を説明しきれないことが明らかになったため,当該年度は爆発解の第1の集中部分の外側の部分で何が起こっているのかを明らかにすることを目指した。このために,Druet(2004)らの諸先行研究による方程式のスケール構造に基づく爆発解析法を当該方程式に拡張し,解析を進めた。この結果,超臨界型の爆発解は第1の集中部分の外側に無限個の集中部分の列を持つことを明らかにした。さらに,極限方程式と解が満たすべき恒等式を駆使してそれぞれの集中部分どうしのつり合い条件を注意深く解析することで,各集中部分の概形,エネルギー,および位置に関する情報を明示的に与えることに成功した。これまでの劣臨界および臨界型に対する先行研究で取り扱われていた爆発解は高々有限個の集中部分を含むもののみに限られていたことに注意すると,当該年度に得られた成果は超臨界型問題ならではの集中現象を先駆けて発見し精密に解析したものとして非常に興味深い。当該年度の研究ではこの研究をさらに推し進め,無限個の集中部分の列が爆発解のグラフ上に無限回の振動を引き起こすことを定量的に証明することに成功した。さらに,このグラフの無限振動により爆発解と特異解の交点数が限りなく増大することを証明することにも成功した。このことにより,最終的に当該方程式の解の分岐図の無限振動の証明にたどり着いた。これは当該方程式における未解決問題の一つを解決する結果として特筆できる。当該結果について学術論文としての執筆および投稿準備を行った。

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

当初の計画にあった研究範囲を広げ,想定外の良い成果を得ている。

Strategy for Future Research Activity

当該年度得られた結果は,より一般の指数増大度を持つ方程式に対しても拡張できることが期待される。そこで今後は,当該年度行った解析手順を見直し改善することで,できるだけ一般の指数型非線形項に対して当該年度の設定で得られた結果と同等かそれ以上の結果を得ることを目指す。特に,一般化された指数型非線形条件のもとで,爆発解の無限集中および無限振動現象,さらに,分岐図の無限振動現象を明らかにすることを目指す。

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (10 results)

All 2024 2023 2022 2021 Other

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results) Presentation (6 results) (of which Int'l Joint Research: 4 results,  Invited: 6 results) Remarks (1 results)

  • [Journal Article] Concentration profile, energy, and weak limits of radial solutions to semilinear elliptic equations with Trudinger-Moser critical nonlinearities.2021

    • Author(s)
      Daisuke Naimen
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 60 Issue: 2

    • DOI

      10.1007/s00526-021-01951-5

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Bubbling nodal solutions for a large perturbation of the Moser-Trudinger equation on planar domains2021

    • Author(s)
      Massimo Grossi, Gabriele Mancini, Daisuke Naimen, Angela Pistoia
    • Journal Title

      Mathematische Annalen

      Volume: 380 Issue: 1-2 Pages: 643-686

    • DOI

      10.1007/s00208-020-01975-w

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A note on radial solutions to the critical Lane-Emden equation with a variable coefficient2021

    • Author(s)
      N. Daisuke, and F. Takahashi
    • Journal Title

      Geometric Properties for Parabolic and Elliptic PDE's( Springer INdAM Series)

      Volume: 47 Pages: 273-290

    • DOI

      10.1007/978-3-030-73363-6_13

    • ISBN
      9783030733629, 9783030733636
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Concentration estimates for semilinear elliptic equations with exponential growth in a disc2024

    • Author(s)
      Daisuke Naimen
    • Organizer
      One-day workshop in Toyonaka
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Concentration phenomena on radial solutions to semilinear elliptic equations with the Trudinger-Moser growth2023

    • Author(s)
      Daisuke Naimen
    • Organizer
      The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications,Special Session 28
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Concentration phenomena on radial solutions to semilinear elliptic equations with the Trudinger-Moser growth2023

    • Author(s)
      Daisuke Naimen
    • Organizer
      The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 10
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Concentration analysis of semilinear elliptic equations with exponential growth in a disc2023

    • Author(s)
      Daisuke Naimen
    • Organizer
      Non-compactness phenomena on critical problems and related topics
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 指数型臨界非線形項を持つ楕円型方程式の球対称解の集中挙動について2022

    • Author(s)
      内免大輔
    • Organizer
      非線型偏微分方程式と走化性
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Trudinger-Moser 型臨界非線形楕円型方程式の球対称解の集中挙動について2021

    • Author(s)
      内免大輔
    • Organizer
      オンライン放物型偏微分方程式ワークショップ
    • Related Report
      2021 Research-status Report
    • Invited
  • [Remarks] 内免大輔HP

    • URL

      https://sites.google.com/site/naimendaisuke/

    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi