• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematical analysis for the complex network structure via topological approaches

Research Project

Project/Area Number 21K13839
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionMeiji University

Principal Investigator

関坂 歩幹  明治大学, 総合数理学部, 助教 (00785107)

Project Period (FY) 2021-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2025: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2024: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords複雑ネットワーク / 非局所発展方程式 / 位相的指数 / スペクトル問題 / Maslov index / Stability index / ネットワーク上の反応拡散系 / 反応拡散系 / ネットワーク / Maslov Index / Stability Index / 連続極限 / 力学系理論
Outline of Research at the Start

複雑ネットワークの理解は,コンピュータネットワークや機械学習などのコンピュータサイエンスに限らず,脳の神経ネットワークや遺伝子ネットワークなど広汎な分野の進展や深い理解のために重要な課題となっている.ネットワーク上の情報や化学物質の拡散現象は,離散ラプラシアンを用いた拡散方程式により記述され,リーマン多様体上のラプラシアンを用いた熱方程式のグラフ版と言える.
本研究では,連続極限が存在する複雑ネットワークの性質を調べるために,ネットワーク上の拡散方程式,あるいはその連続極限を取った発展方程式に現れる作用素のスペクトルを位相的手法により調べ,ネットワーク構造と位相的性質の関係を明らかにする.

Outline of Annual Research Achievements

複雑ネットワーク上の拡散現象を記述する非局所発展方程式の定常解に関するスペクトル理論とその位相的枠組みを構成するために以下を考察・実施した.
1.非局所発展方程式の定常解は一般に微分・積分方程式を満たす解として与えられる.例えば,従来の反応拡散系などは,バナッハ(ヒルベルト)空間上のベクトル場の平衡解,周期解,ホモ・ヘテロクリニック解として定常解が与えられる.非局所反応拡散系の場合も同様にバナッハ空間上のベクトル場を与えるが,初期値問題として定式化するためには時間遅れ・進み系で行われるような関数空間の設定が必要であることがわかった.同様にして,積分方程式の定常解を幾何学的に考察するためには,本質的に無限次元となることを回避する必要があることがわかった.これにより,例えば安定多様体と不安定多様体の交叉を有限次元ベクトル空間内で考えることができ,種々の交差理論を適用することが可能となることが判明した.
2.非局所反応拡散方程式と従来の反応拡散系の間には,反応拡散近似と呼ばれる近似手法によって関係性を与えることができる.この手法は無限次元バナッハ空間上のベクトル場の近似ベクトル場を与える手法である.この手法の拡張・一般化により,どのような積分核であれば反応拡散系で近似できるのかについて研究を行った.
3.ネットワーク上の反応拡散系は,情報の拡散現象の一般化であるが,空間多次元上の反応拡散系の特異極限を考えることによっても導出される.この関係について,グラフあるいは単体複体上のベクトル束および接続形式を用いて,どのようなベクトル場がグラフ上の反応拡散系として存在し得るかについて研究を行なった.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

初年度のコロナウィルスによる国際研究集会などへの参加ができなかった問題や,研究者達と対面で議論することができなかったことの遅れの影響がまだある.しかしながら,本年は非局所方程式が持つ超越性・無限次元性と幾何学的な枠組みとの関係のいくつかが判明するなどの大きな発展があった.これにより時間遅れを持つ微分方程式との関連が明らかになり,研究開始当初にはなかった分野への応用が考えられる.また,グラフ上の微分幾何学の発展から,ネットワーク上の反応拡散系に対する新しいアプローチとして,領域の特異極限に伴う接続形式や曲率形式の極限を適用することを試みている.これはネットワーク上の拡散現象がもたらすパターン形成問題に,曲率などの影響を付与できることを示唆しており,複雑ネットワークに対する幾何的性質と位相的性質の関係があることを意味している.研究を進める中でこのような新しい問題に直面した結果,初年度の遅れを取り戻すほどは研究が進展しなかった.

Strategy for Future Research Activity

非局所反応拡散系の近似手法や無限次元Maslov指数の応用,拡張など,昨年度に明らかになった種々の結果を複雑ネットワークの連続極限の問題に適用する.また,昨年度に明らかになった新しい問題を各専門家と議論しながらできるだけ早期に解決を目指す.その後,初年度から未解決である連続極限に伴う隣接グラフや相互作用が生成するMorse関数の極限の問題について取り組む.

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (11 results)

All 2023 2022 2021

All Presentation (11 results) (of which Int'l Joint Research: 2 results,  Invited: 7 results)

  • [Presentation] Defects in the segmented pattern for oscillated reaction-diffusion systems2023

    • Author(s)
      Ayuki Sekisaka
    • Organizer
      ICIAM2023
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 非局所発展方程式の線形安定性問題に現れる諸問題2023

    • Author(s)
      関坂歩幹
    • Organizer
      軽井沢グラフと解析研究集会2023
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Maslov指数と偏微分方程式への応用 III2023

    • Author(s)
      関坂歩幹
    • Organizer
      発展方程式における系統的形状解析及び漸近解析:春の学校
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Maslov指数と偏微分方程式への応用 II2023

    • Author(s)
      関坂歩幹
    • Organizer
      発展方程式における系統的形状解析及び漸近解析:春の学校
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Maslov指数と偏微分方程式への応用 I2023

    • Author(s)
      関坂歩幹
    • Organizer
      発展方程式における系統的形状解析及び漸近解析:春の学校
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 振動場反応拡散系に現れるセグメントパターンの安定性について2023

    • Author(s)
      関坂歩幹
    • Organizer
      2023日本数学会年会
    • Related Report
      2022 Research-status Report
  • [Presentation] Topological Approach to the Stability Problem of Traveling Waves2022

    • Author(s)
      関坂歩幹
    • Organizer
      NCTS Webinar on Nonlinear Evolutionary Dynamics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 振動場反応拡散系に現れるセグメントパターン2022

    • Author(s)
      関坂歩幹
    • Organizer
      2022年度応用数学合同研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] 反応拡散系の進行波解の安定性問題とEvans関数2022

    • Author(s)
      関坂歩幹
    • Organizer
      応用数学勉強会2022
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 非局所反応拡散系の進行波解に対する安定性解析2021

    • Author(s)
      関坂歩幹,山本宏子
    • Organizer
      2021年応用数学合同研究集会
    • Related Report
      2021 Research-status Report
  • [Presentation] Four-scroll attractor modelが持つ幾何学的構造2021

    • Author(s)
      関坂歩幹
    • Organizer
      日本数学会 2021年度秋季総合分科会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi