• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on dual expression for set valued inequalities via set valued analysis

Research Project

Project/Area Number 21K13842
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionKanazawa Gakuin University

Principal Investigator

Ogata Yuto  金沢学院大学, 経済情報学部, 講師 (10880958)

Project Period (FY) 2021-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Keywords集合最適化 / 集合関数 / 数値計算アルゴリズム / ロバスト性 / 集合値写像 / 集合値不等式 / 劣線形スカラー化 / 凸解析学 / 多目的最適化 / 集合値解析学
Outline of Research at the Start

本研究は,集合値解析学の研究テーマの1つである集合値不等式と,集合関数の一種である劣線形スカラー関数についての関係を究明するものである。先行研究では,線形位相空間上のコンパクト性を持つ集合間で集合値不等式が成り立つことを集合の劣線形スカラー化関数を用いて表現でき,その応用として最適化問題の最適性やある種のロバスト性を判断できることが知られている。本研究では劣線形スカラー化関数が集合値不等式の双対表現となるためのより緩い条件について考察する。

Outline of Final Research Achievements

The main purpose of the research is to investigate relaxed criteria for characterization of set relations with sub-linear set functions. We proved dual expressions for the relations by using the value of the set functions via relaxed conditions (cone-compactness and cone-closedness) as opposed to existing ones using general compactness. Also, we applied the results to multi-valued perturbation problems having uncertain feasibility. This research suggests 6 criteria for confirming how robust the feasible sets of the problems are by calculation in finitely many steps in spite of the given sets are unbounded.

Academic Significance and Societal Importance of the Research Achievements

本研究は,錐コンパクト性や錐閉性を持つ集合の優劣関係を実数値の比較で判定できる定理を証明した。これにより,計算が難しいとされてきた集合最適化問題の最適性条件を実数の問題に帰着できるようになった。また,従来あまり目立った研究結果がなかった無限集合間の優劣を判定するアルゴリズムについて,有限次元空間の凸多面集合に限れば閉凸な半順序錐による優劣関係を有限回で計算できることが証明された。これにより,誤差や複数の要素が含まれる事象に対して,理論値や代表値に縛られることなく集合同士を比較できる手法の1つを提案できたことが本研究の重要な意義であると考える。

Report

(3 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • Research Products

    (9 results)

All 2023 2022 2021

All Journal Article (4 results) (of which Peer Reviewed: 1 results,  Open Access: 3 results) Presentation (5 results) (of which Invited: 1 results)

  • [Journal Article] Generalized characterization theorems for set relations and an application to multi-valued optimization2023

    • Author(s)
      Yuto Ogata
    • Journal Title

      Minimax Theory and its Applications

      Volume: 8

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Robustness of multi-valued optimization problems via set relations2023

    • Author(s)
      Yuto Ogata
    • Journal Title

      数理解析研究所講究録

      Volume: 2240 Pages: 169-174

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] Generalized dual expression for set relations by means of sublinear scalarization functions2022

    • Author(s)
      Yuto Ogata
    • Journal Title

      数理解析研究所講究録

      Volume: 2214 Pages: 70-75

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] Study on a relaxation for theorems of the alternative for sets2021

    • Author(s)
      Yuto Ogata
    • Journal Title

      数理解析研究所講究録

      Volume: 2194 Pages: 170-177

    • NAID

      120007165871

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Presentation] 集合比較を用いた最適化問題の実行可能性判定について2022

    • Author(s)
      小形 優人
    • Organizer
      日本OR学会秋季研究発表会2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] Robustness of multi-valued optimization problems via set relations2022

    • Author(s)
      Yuto Ogata
    • Organizer
      Study on Nonlinear Analysis and Convex Analysis
    • Related Report
      2022 Annual Research Report
  • [Presentation] 集合最適化における集合の比較方法とその双対表現について2022

    • Author(s)
      小形優人
    • Organizer
      日本OR学会中部支部講演会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Study on a relaxation for theorems of the alternative for sets2021

    • Author(s)
      Yuto Ogata
    • Organizer
      The RIMS Workshop on Nonlinear Analysis and Convex Analysis
    • Related Report
      2021 Research-status Report
  • [Presentation] Generalized dual expression for set relations by means of sublinear scalarization functions2021

    • Author(s)
      Yuto Ogata
    • Organizer
      Study on Nonlinear Analysis and Convex Analysis
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi