Project/Area Number |
21K13877
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 13030:Magnetism, superconductivity and strongly correlated systems-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 磁性 / 液晶 / 強相関電子系 / スキルミオン / Magnetism / Strong correlation / Spin chirality / Skyrmion |
Outline of Research at the Start |
We aim to continue and expand our work on rare-earth based intermetallics by searching for new magnetic ground states, by studying the coupling between conduction electrons and local moments, and by exploring novel transport or optical responses.
|
Outline of Final Research Achievements |
In intermetallic compounds, our previous work established the formation of nanometer-sized skyrmion spin vortices and other complex textures. In this research project, we aimed to reveal cross-correlation between spin and charge sectors in centrosymmetric intermetallics, especially regarding the effect of (scalar or vector) spin chirality on the wave-like motion of conduction electrons (quantum phase). Over the past two years, we have especially focused on the effect of thermal fluctuations, which randomize spin configurations and may be expected to suppress coupling between charge and spin sectors. We found that fluctuations can in fact enhance quantum phase effects, depending on the lattice structure and symmetry of the material host.
|
Academic Significance and Societal Importance of the Research Achievements |
物性物理学の分野では、マルチフェロイック物質とは、磁気的刺激と電気的刺激によって電気的性質と磁気的性質をそれぞれ相互制御することができる物質を指します。マルチフェロイック物質の一つにらせん磁性体があり、らせん磁性絶縁体のマルチフェロイック特性は20年近く前から盛んに研究されてきました。らせん磁性金属では、スピンが仮想的な電磁ベクトルポテンシャル(創発磁場・電場)を生成し、動く電荷の運動をねじ曲げたりすることがあります。私たちの研究は、このような一般化された金属マルチフェロイックスと、その高温での機能的応答の理解に貢献するものです。
|