Project/Area Number |
21K13879
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 13030:Magnetism, superconductivity and strongly correlated systems-related
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Nakamura Shota 名古屋工業大学, 工学(系)研究科(研究院), 助教 (40824892)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | キラル金属磁性体 / 磁気構造 / 磁気相互作用の制御 / 反対称スピン相互作用 / 反対称スピン軌道相互作用 / キラル磁性 |
Outline of Research at the Start |
キラル金属磁性体はキラリティ(掌性)を持ち、磁気スピンが鏡写し右左どちらかの片巻らせん構造が許される。このらせん構造のひねりの数は印加する磁場の強さを変えると、ゼロから数億個まで段階的に変えることができる。本研究では交流磁気抵抗測定からその動的応答を捉え、らせん構造の基本学理を解明する。
|
Outline of Final Research Achievements |
In this study, we aim to establish a fundamental theory of RKKY-type DM interaction, which is the origin of the magnetic spin "twist" in f-electron chiral helical magnets. Circularly polarized X-ray scattering experiments have revealed that an antiferromagnetic uniaxial chiral magnetic ordered state is observed in a new material discovered in our laboratory, triclinic GdNi3Ga9, and its element-substituted samples. It was also found that the helical period corresponding to the twist can be tuned by elemental substitutions. Based on the sine-Gordon model, the magnitude of the DM interaction, which is the origin of the twist, is estimated from the critical magnetic field and temperature, and the relationship between the twist angle of the magnetic structure and the DM interaction is successfully found.
|
Academic Significance and Societal Importance of the Research Achievements |
キラル磁性体は磁気スピンが右巻きあるいは左巻きらせん状に配列した特徴的な磁気構造をもつ。結晶構造を反映して電気磁気の交差相関やカイラル誘起スピン選択効果が観測されており、新しい電気磁気デバイスへの応用が期待できる。強磁性体に比べて100倍速い磁気駆動も報告されており、高周波デバイスとの親和性も高い。本研究ではキラル磁性体を特徴づけるらせん周期の調整に成功しており、本研究分野の系統的な研究に貢献できる。
|