Project/Area Number |
21K14047
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
Oshima Sota 東京都立大学, システムデザイン研究科, 助教 (90885112)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 複合材料 / 欠陥 / 亀裂 / 破壊力学 / 疲労破壊 / 有限要素解析 / 炭素繊維強化複合材料 / 微視的損傷 / その場観察 / 破壊メカニズム / 破壊メカニズム 3.研究課題名 / 炭素繊維複合材料 / トランスバースクラック |
Outline of Research at the Start |
炭素繊維複合材料の積層板における最も初期の破壊モードであるトランスバースクラックは、微視的欠陥を起点に生じることが多く、発生箇所の予測が難しい。このため、その発生・進展プロセスの実験的評価は困難とされてきた。本研究では、超微細な人工欠陥を炭素繊維複合材料中に導入し、その場観察を行うことで、繰返し荷重下におけるトランスバースクラックの発生・進展のメカニズムを実験的に解明する。さらに、有限要素法を用いた微視的損傷進展解析を行うことで、トランスバースクラック発生・進展の予測手法を確立する。これにより、積層板の疲労寿命を正確に予測できるようになり、複合材料構造の信頼性向上に貢献する。
|
Outline of Final Research Achievements |
Carbon fiber composite polymers (CFRPs) are widely used in the aerospace industry because of their strength and weight. The presence of defects is inevitable during the manufacturing process of CFRPs. In this study, the damage progression behavior was evaluated initiated from defects. Artificial defects with different sizes were introduced in CFRPs. The minimum size of the artificial defects was as small as 2.5 μm. Cracks initiation and propagation from the defects were observed using a high-magnification optical microscope. A trigger system synchronized with the testing machine was developed to capture crack growth behavior under cyclic (fatigue) loading. In addition, the stress distribution around the defects was visualized using a numerical approach.
|
Academic Significance and Societal Importance of the Research Achievements |
炭素繊維複合材料中の欠陥は寸法や位置、分布を制御できないため従来は欠陥を起点とする亀裂進展挙動を定量的に評価することは困難とされてきた。本研究では位置と大きさが制御された欠陥をひとつだけ材料中に導入できるため、欠陥の影響を定量的に評価することが可能となった。これにより、これまでは「材料のばらつき」として取り扱われてきた積層板の寿命をより正確に予測できるようになることが期待される。これは航空宇宙分野をはじめとした複合材料の信頼性が求められる分野で重要な知見である。
|