Project/Area Number |
21K14124
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 20020:Robotics and intelligent system-related
|
Research Institution | The University of Electro-Communications (2022-2023) Nagoya University (2021) |
Principal Investigator |
Sato Ryuki 電気通信大学, 大学院情報理工学研究科, 助教 (10883572)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 脚ロボット / 多関節筋 / 筋腱複合体 / 弾性機構 / 関節間協調 / 生物規範機構 |
Outline of Research at the Start |
動物の身体には,複数の関節にまたがる多関節筋と呼ばれる特徴的な筋が存在する.動物の運動中には多関節筋を介して関節間でエネルギーが移動し,安定した歩行から高速な走行や跳躍など,高度で高効率なロコモーションに重要な役割を果たしている. 本研究では,脚ロボットに動物の筋骨格特有の複数の関節をまたがって備わる筋・腱に着想を得た多関節筋規範機構を搭載した四脚ロボットを開発し,隣接の関節間,および体幹と四肢のような部位間での身体内力学的エネルギー遷移・伝搬に基づいて,全身を協調動作させるための運動制御方法を確立することで,四脚ロボットによる高度で多様なロコモーションの実現を目指す.
|
Outline of Final Research Achievements |
This research aims to improve the motion performance of a quadruped robot by studying mechanism design and motion control inspired by the kinetic energy transmission mechanism through the multi-articulated muscles in the animals' musculoskeletal systems. We developed the one-legged robot with a leg mechanism inspired by the function of a bi-articular muscle-tendon complex on a hind limb and applied motion control to maximize its jumping motion performance. The jumping experiments using the one-legged robot demonstrate the effectiveness of the mechanism and motion control in dynamic motion. We also developed the gait control for a quadruped robot with the proposed bi-articular muscle-tendon complex mechanism on the legs. The results of the trot gait simulation using the dynamic model of the developed quadruped robot show the feasibility of efficient trotting.
|
Academic Significance and Societal Importance of the Research Achievements |
多関節筋は動物の身体の特徴的な構造の1つで,従来の脚ロボットの設計にはあまり見られないが,関節間でのエネルギー伝搬を可能にしたり,関節間の協調を生み出したりするなど,重要な役割を持つ.本研究で提案した機構と制御による成果は,動物の筋骨格を規範とした機構を脚ロボットに導入することで動物並みの運動性能を実現できる可能性を示唆しており,脚ロボットの活動範囲の拡張と実用化につながる可能性を持つ.
|