Project/Area Number |
21K14141
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21010:Power engineering-related
|
Research Institution | Nagoya University |
Principal Investigator |
Kodama Naoto 名古屋大学, 工学研究科, 助教 (80828971)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | アーク / ヒューズ / 消弧媒体 / 熱プラズマ / 限流ヒューズ / 直流遮断 / 珪砂 / 高分子材 |
Outline of Research at the Start |
本研究では,従来からヒューズ内部のアーク消弧媒体として用いられてきた珪砂(SiO2)に加えて,高分子材料を新たに用いる。アークと固体高分子材の接触・溶発を利用することで,(1)電流路の強制的な収縮によるアーク抵抗の増加,(2)高分子蒸気によるアークの拡散,の2つの効果を融合させた革新的な小型・軽量・高遮断容量のDCヒューズを実現させる。
|
Outline of Final Research Achievements |
The present study investigated a new current-limiting interrupting method for arc discharges formed in current-limiting fuses. A simulated fuse with a narrow part made of light-curing resin was designed and used for quenching of the arc discharges. As a result of the experiment, compared to silica sand which has been conventionally used as an arc quenching medium for current-limiting fuses, the new method successfully increased arc resistance during the arc quenching process and shortened the arc quenching time. The reason for the increase in arc resistance in this method was examined by simulating the gas characteristics of the arc. As a result, it was found that the electrical resistivity and heat dissipation of the arc increased due to the polymer vapor mixing into the arc, and as a result, the arc resistance increased.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の結果、数十年間の間、限流ヒューズのアーク消弧媒体として用いられてきた珪砂に加えて、高分子材で作成した狭隘部とアークの物理的な接触および溶発によるアークの物性の変化を利用することで、限流ヒューズのアーク遮断容量の更なる高容量化が見込めることが判明した。本成果は、再生可能エネルギーの導入において必須となる直流系統の実現と保護に対して資する成果となっている。
|