Project/Area Number |
21K14170
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21030:Measurement engineering-related
|
Research Institution | Hosei University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2022: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 電気化学発光 / 電子移動反応 / 発光補助ドーパント / 蛍光 / 燐光 / マイクロ流体デバイス / 紫外光 / ホスト・ゲスト |
Outline of Research at the Start |
本研究課題では、紫外領域に最大ピークを有する電気化学発光(UV-ECL)溶液の開発を光物理および酸化還元特性の観点から追究するとともに、当該溶液をホストとし、熱活性化遅延蛍光材料や燐光材料をゲストとして用いることで、エネルギー移動機構を利用した高輝度・高効率ホスト―ゲスト系ECLデバイスの実証を目指す。さらに、ECL発光を励起光源としたマイクロ化学分析チップをMEMS技術により作製する計画である。
|
Outline of Final Research Achievements |
This research aims to develop highly luminescent and efficient electrogenerated chemiluminescence (ECL) devices toward future surface-emission light sources. During the research period, electrochemical and photophysical properties of not only fluorescent materials that emit light in a wide wavelength range from near-ultraviolet to visible light, but also phosphorescent and TADF materials were evaluated, and I proposed a novel ECL system based on an electron transfer reaction between radical ions of different materials. The fluorescent ECL cell using rubrene exhibited the maximum luminance and current efficiency of 292 cd/m2 and 4.50 cd/A, while the phosphorescent ECL cell using an iridium complex exhibited those of 113 cd/m2 and 2.84 cd/A.
|
Academic Significance and Societal Importance of the Research Achievements |
ECL素子は発光性溶液を2枚の電極付き基板で挟み作製される簡易な構造の自発光素子であるが、実用化が進む有機ELと比べるとその特性は後れを取っていた。従来の溶液は主に単一の分子を有機溶媒に溶解することで調製されていたが、本研究課題では、ラジカルアニオンになりやすい分子とラジカルカチオンになりやすい分子とを組み合わせた機能分離型のECLデバイスを検討した。その結果、異分子のラジカルイオン間の電子移動反応を利用することで効率的に発光性分子の励起状態が得られることが明らかになった。本研究をさらに追究することで、透明ディスプレイなど新たなエレクトロニクス産業の発展が期待される。
|