Project/Area Number |
21K14266
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 22050:Civil engineering plan and transportation engineering-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
YASUDA SHOHEI 東京大学, 大学院工学系研究科(工学部), 助教 (00899247)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 交通流理論 / 深層学習 / ネットワーク表現 / 空間統計学 / ベイズ統計学 / 交通状態推定 / kinematic wave理論 / ニューラルネットワーク / グラフニューラルネットワーク / 交通工学 / 交通ネットワーク / 機械学習 / 走行軌跡データ |
Outline of Research at the Start |
近年、車両と他の車両やインフラ間で情報通信を行うConnected Vehicle技術等の発展により、車両の走行軌跡情報が豊富に収集・蓄積されるようになった。これらのデータは観測地点を限定されないことからサイズが膨大になりやすく、またその活用には多くの複雑な前処理を必要とするため、交通管制等へのリアルタイムな活用には課題が残されている。本研究課題は、道路ネットワーク上で観測された走行軌跡データを効率的に処理・集約し、大規模ネットワークの交通状態をリアルタイムに推定する方法論を開発するものである。
|
Outline of Final Research Achievements |
In this study, we developed a method for real-time traffic state estimation on large-scale road networks, aiming at next-generation traffic control. Specifically, we focused on dynamic network representations using spatial statistics and the development of traffic state estimation methods utilizing traffic flow theory and deep learning. By developing a methodology for dynamic network representation based on vehicle trajectory data tailored to specific purposes, we demonstrated the potential to significantly reduce computational complexity while ensuring estimation accuracy. Furthermore, by combining traffic flow theory and deep learning, we developed an estimation method capable of efficiently handling computations involving a vast number of parameters for the network, while physically describing the dynamics of congestion formation and dissipation.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果の学術的意義は,大規模なネットワークを対象とした交通状態推定において,その解析空間である道路ネットワークを観測データ自体から動的に生成するという新たなアプローチにより,推定精度を担保しつつ計算量を大幅に削減できる可能性を示した点である.社会的意義として,計算量の削減による高速な推定や渋滞の延伸解消を物理学的な観点を有しつつ記述可能な方法論の実現は,正確かつリアルタイムな交通状態推定を可能とし,災害時の効率的な避難誘導や自動運転等の新技術の統合的な制御等の次世代管制システムの実現に寄与する.
|