• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Real-time hysteresis identification in controlled structures based on restoring force reconstruction and Kalman filter

Research Project

Project/Area Number 21K14284
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 23010:Building structures and materials-related
Research InstitutionKyoto University (2022-2023)
Tohoku University (2021)

Principal Investigator

Guo Jia  京都大学, 農学研究科, 准教授 (50868081)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords復元力 / カルマンフィルタ / 深層学習 / オートエンコーダー / ニューラルネットワーク / 履歴特性 / Kalman filter / Autoencoder / Force identification / Unsupervised learning / Deep learning / Deep neural network / Force reconstruction / Linear multistep method / Data-driven approach / Identify hysteresis / Bayesian estimation / 構造ヘルスモニタリング / 復元力時刻歴推定
Outline of Research at the Start

計算機処理能力の向上と地震観測網の拡充に伴い、観測記録を活用した新たな技術の開発が目ざましい.本研究では、計測箇所の限られた地震観測データのみで免震・制振装置の性能変化や損傷をリアルタイムに推定・検知する新たな方法を開発する.この手法は、観測点数が少なくても高い推定精度が得られることと、復元力モデルを予め用意する必要がないことが特徴である.この手法の有効性と推定精度の検証は、計測装置が豊富に設置された既存の建物の観測データと、振動台実験から得られる実験データを用いて行う.

Outline of Final Research Achievements

This study develops a new framework for real-time identification of the nonlinear hysteric behavior of seismic response-controlled structure using limited observation data. First, a pure Kalman filter algorithm is employed and it is proved that the additional augmentation of the restoring forces as state variables acts as the role of Tikhonov regularization. Furthermore, to address the numerical instability issues, a physics-deep neural network model and unsupervised autoencoders are integrated with the Kalman filter equation respectively. Numerical examples of various seismic isolation and vibration control structures, as well as shaking table experiments show that the improved methods have high estimation accuracy and stability, even with limited number of measured data.

Academic Significance and Societal Importance of the Research Achievements

日本においては、地震が災害リスクとして主要な位置を占めており、構造モニタリング技術は地震対策の一環としてさらなる発展が期待できる。現在の構造モニタリングの解析手法は、主に固有振動数、モード形状、減衰比のような建物全体の振動特性の変化を評価する手法が多いが、構造物の非線形性や局所的な損傷状況を把握するのには適していない。本研究では、免震・制振装置の非線形履歴挙動をリアルタイムに推定する方法を確立し、それによって装置の損傷を検知できる可能性を示した。これらの技術は、居住者や建物の施設管理者向けの建物の健全性や被害状況を瞬時に把握する基盤技術となる得るものである。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (6 results)

All 2023 2022 2021

All Journal Article (3 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Combination of physics-based and data-driven modeling for nonlinear structural seismic response prediction through deep residual learning2023

    • Author(s)
      Guo J, Enokida R, Li D, Ikago K.
    • Journal Title

      Earthquake Engineering & Structural Dynamics

      Volume: - Issue: 8 Pages: 2429-2451

    • DOI

      10.1002/eqe.3863

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Data-driven modeling of general damping systems by k-means clustering and two-stage regression2022

    • Author(s)
      Guo Jia、Wang Li、Fukuda Iori、Ikago Kohju
    • Journal Title

      Mechanical Systems and Signal Processing

      Volume: 167 Pages: 108572-108572

    • DOI

      10.1016/j.ymssp.2021.108572

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Real-time hysteresis identification in structures based on restoring force reconstruction and Kalman filter2021

    • Author(s)
      Wang Li、Guo Jia、Takewaki Izuru
    • Journal Title

      Mechanical Systems and Signal Processing

      Volume: 150 Pages: 107297-107297

    • DOI

      10.1016/j.ymssp.2020.107297

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Combination of physics-based and data-driven modeling for nonlinear structural seismic response prediction2022

    • Author(s)
      Jia GUO
    • Organizer
      The 15th World Congress on Computational Mechanics & the 8th Asian Pacific Congress on Computational Mechanics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 物理シミュレーションと人工知能を融合した構造物の非線形地震応答推定手法2022

    • Author(s)
      郭 佳
    • Organizer
      第66回理論応用力学講演会
    • Related Report
      2022 Research-status Report
  • [Presentation] Combination of physics-based and data-driven modeling for nonlinear structural seismic response prediction2022

    • Author(s)
      郭 佳
    • Organizer
      第27回計算工学講演会
    • Related Report
      2022 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi