Project/Area Number |
21K14354
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 24010:Aerospace engineering-related
|
Research Institution | Kyushu University (2022-2023) Japan Aerospace EXploration Agency (2021) |
Principal Investigator |
TAKAO Yuki 九州大学, 工学研究院, 助教 (70896654)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 大型宇宙構造物 / 膜展開構造 / 連続体 / 振動 / 波動 / 形状制御 / ハードウェア / 数値解析 / 膜構造 / 有限要素解析 / 薄膜構造物 / ソーラーセイル |
Outline of Research at the Start |
大型宇宙構造物の質量効率向上のためには,軽量かつ大面積な薄膜の活用が有効である.極めて柔軟な薄膜の形状を軌道上で管理するために,従来ではマストなどの支持構造物を用いて張力を印加し,変形を抑制する術が取られてきた.しかし100 mを超える超大型の膜構造では,張力や慣性力にマストが耐え切れず座屈してしまい,実現は難しい.そこで本研究は,薄膜の変形を許容する新たな形状管理方策として,波動制御によるアプローチを提案する.超大型膜が定在波を形成するまでの波動伝達特性に着目し,その力学構造を明らかする.さらに干渉波の形成による形状制御システムを開発し,実用化を目指したハードウェアレベルでの検討を行う.
|
Outline of Final Research Achievements |
This study investigated the wave-propagation mechanism of large-sized membrane space structures, for application to the development of a shape-control system that enables active deformation of the membranes to various three-dimensional shapes. First, a dynamic simulator that can handle the deformation of 100-meter-class large-sized membranes was developed. It successfully revealed the process in which a wave excited by an external force forms a three-dimensional vibration mode. Next, through an impulse-response analysis, a theory that can analytically describe the transient response of a membrane to an arbitrary external force was developed. Finally, a shape-control mechanism that exploits the physical insights obtained by the numerical analysis and the deformation theory was developed. The validity of the control system was demonstrated through a ground-based demonstration test using a large vacuum chamber.
|
Academic Significance and Societal Importance of the Research Achievements |
連続体の変形は複雑な偏微分方程式で記述され、解析的に解くことは多くの場合困難である。本研究では、任意の時間履歴・空間分布を持つ外部入力に対する宇宙薄膜構造物の変形応答を解析的に解くことに成功した。従来では計算コストの大きな数値解法が求められる場面において、真の解を与える"Ground Truth"が得られたことの学術的意義は計り知れない。これを活用して開発した形状制御システムは、研究目的である宇宙薄膜構造物のみならず、条件次第では地上環境でも有効に機能することが確認された。つまり、アンテナやプロジェクタなどの地上用製品の立体化や動的変形の見通しも得られ、社会的意義も極めて高い成果が獲得された。
|