Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2021: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Outline of Research at the Start |
本研究では、主にCO2水素化反応に用いる新規な合金触媒の開発を行う。CO2の水素化反応には様々な遷移金属が活性金属(例えば、メタノール合成にはCuやPd, FT軽油合成にはFeやRu, メタン合成にはNiやCo, Ruなど)として作用することが知られている。また、酸性気体であるCO2と相互作用がある塩基性金属の酸化物を担体に用いることで触媒活性が劇的に向上することが知られている。本研究では、これら活性金属上での「合成場」と塩基性金属上での「CO2の活性場」の物理的距離を最短化することで反応が効率的に進行することを狙いとして、金属結合を介して活性金属と塩基性金属が隣接する合金触媒の開発を目指す。
|
Outline of Final Research Achievements |
In order to obtain alloy powders with high surface areas, we established an original synthesis method using CaH2 as a reducing agent in molten salt. The obtained alloy powders were Ni2TiAl, TiFe, FeAl, CrMnFeCoNi, AlCoCrFeNi(V), TiNiSi, CaPt2, YIr2, etc., and were confirmed to be alloys with a single crystal structure by XRD measurements. From the results of N2 adsorption experiments, it was confirmed that the BET surface area of these alloy powders is ~100m2/g, which is a relatively large surface area. Subsequently, the hydrogenation activity of the obtained alloy powders was evaluated in CO2 hydrogenation, CO hydrogenation, and liquid-phase organic synthesis reactions. As a result, compared with conventional supported catalysts, a decrease in activation energy and an improvement in activity (TOF) were observed, and thus unique characteristics of alloy catalysts were observed.
|