Project/Area Number |
21K14483
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 28020:Nanostructural physics-related
|
Research Institution | Yamagata University |
Principal Investigator |
OTO TAKAO 山形大学, 大学院理工学研究科, 准教授 (20749931)
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | InGaN / ナノ構造 / メタマテリアル / キラル / 円偏光 / 表面プラズモン / クラスタ配列 / 光学活性 / 窒化物半導体 / ナノコラム / キラル構造 / フォトニック結晶 / ヤヌス構造 |
Outline of Research at the Start |
本研究では,Tiマスク選択成長法による規則配列窒化物半導体ナノコラム構造を応用した人工ナノ結晶構造を設計し,光の状態をエンジニアリングすることで,新規光機能を可視光領域で発現させて,高機能な発光素子を開拓する.ナノコラムを「原子」のように扱い,クラスタリングや周期配列により分子構造や結晶構造を自由度高く設計して,偏光・出射方向・軌道角運動量などの光の状態制御を行う.特に,鏡映対称性のないキラル型構造や表裏で物性の異なるヤヌス型構造に着目して,新たな光機能性を探索する.
|
Outline of Final Research Achievements |
In this study, we have realized optical functionality that InGaN does not have by designing a unit lattice structure, and we have introduced a chiral structure in which mirror symmetry is eliminated. The chiral structure has different refractive indices for left- and right-circularly polarized light. Therefore, the chiral structure is expected to realize an ultra-compact circularly polarized light source. Nanopillar structures were fabricated on blue LED substrates by hydrogen environment anisotropic thermal etching. The nanosturcutural effect produced higher emission intensity than a planar structure, and polarization rotation was observed only in the chiral pattern, which was in good agreement with the calculated results of rigorous coupling wave analysis. Because the wavelength at which polarization rotation occurs can be controlled by the period and diameter, it was found that large polarization rotation can be obtained in the visible light region by optimizing the nanostructure.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で提案したキラルナノ構造はナノピラー構造を複数配置するだけであるので,従来のナノ構造作製技術をそのまま使用できるが,ナノ構造の設計により従来窒化物半導体が持たない光機能性を実証できたことは可視光デバイスとしての応用範囲の拡大に繋がり,学術的にも社会的にも大きな意義を持つ結果である.今後,光とナノ構造の相互作用という学理を明らかにし,高効率な可視単一円偏光素子が実現できれば,生体内イメージング,3Dディスプレイ光源,可視光通信など,医療・映像・通信分野への様々な応用分野の開拓に発展できると期待される.
|