Project/Area Number |
21K14591
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 32010:Fundamental physical chemistry-related
|
Research Institution | Kyoto University (2023) Waseda University (2021-2022) |
Principal Investigator |
Uratani Hiroki 京都大学, 工学研究科, 特定助教 (50897296)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 励起状態 / 半導体 / ダイナミクス / 量子化学 / 計算化学 |
Outline of Research at the Start |
励起状態の物質のダイナミクスは基礎応用両面から重要な対象である。半導体材料等においては、励起に伴う電子状態変化が数ナノメートル程度の空間的範囲にわたって広がる非局所的励起状態がしばしばみられる。 励起状態の計算化学的シミュレーションにおいては、計算に要する時間が系の大きさに対して急激に増大するという性質のため、非局所的励起状態を扱うことは困難であった。 本研究では、系の大きさに対する計算時間の増大を抑えた励起状態ダイナミクス計算手法を開発し、非局所的励起状態ダイナミクスのシミュレーションを現実的な時間で実行可能とすることを目指す。また、当該手法を半導体の動作機構解明や材料設計に応用する。
|
Outline of Final Research Achievements |
Detailed analyses of photoexcited-state dynamics of chemical species such as molecules and solids are important from both fundamental and practical points of view. Quantum-chemitry-based computer simulations are powerful tools, but their computational cost has limited their applicability. In this study, we propose a novel approach called patchwork approximation, which reduces the computational cost by using the spatial locality of electronic hamiltonian. The proposed approach enabled computer simulations of photoexcited-state dynamics of large systems withing a reasonable computational cost. We applied the proposed approach to organic solar cells to analyze the detail of the charge separation process, which generates the plus and minus charges from the photoexcited state.
|
Academic Significance and Societal Importance of the Research Achievements |
太陽電池や光触媒に代表される光エネルギー利用は人類にとって重要な課題であるものの、エネルギーの利用効率をはじめ、解決すべき課題は多い。これらの課題を解決するには、光照射下における物質の振舞いの詳細な観察と理解に基づく、合理的な物質設計が必要不可欠である。本研究により、実際の太陽電池や光触媒等に近いモデルを用いた計算機シミュレーションが現実的な時間で実行できるようになった。これを応用することで、光エネルギーを電力や化学エネルギーに変換する過程を、これまで以上にミクロな視点で理解することが可能となる。これにより、効率的な光エネルギー利用に向けた物質設計の指針を提供できるものと期待される。
|