Project/Area Number |
21K14594
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 32010:Fundamental physical chemistry-related
|
Research Institution | Hokkaido University (2023) Chuo University (2022) Institute of Physical and Chemical Research (2021) |
Principal Investigator |
HASHIYADA SHUN 北海道大学, 電子科学研究所, 助教 (40805454)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
|
Keywords | キラリティ / 偏光計測 / 近接場光 / スネルの法則 / 禁制光 / 電磁キラリティ(Zilch)保存則 / プラズモン / ナノ物質 / 電磁キラリティ保存則 / 電磁キラリティ散逸 / 光のスピン角運動量 / 電磁キラリティ / 保存則 / 金属ナノ構造 |
Outline of Research at the Start |
キラル金属ナノ構造の近傍に局在するキラル近接場光のスペクトル特性を明らかにできれば,高感度キラル分光法への応用が期待できる。そこで本研究では,ナノ構造を担持する基板によって伝搬光に変換される近接場光(禁制光)のみを偏光解析・分光検出することで,キラル近接場光のスペクトルが迅速に得られる手法を開発する。本研究で開発する手法を様々な構造因子を持つナノ構造に適用することで,キラル近接場光のスペクトル特性を決めるナノ構造の物性因子を明らかにする。
|
Outline of Final Research Achievements |
If we can elucidate the spectral properties of chiral electromagnetic near-field, which has chiral properties localized near chiral (asymmetric) metal nanostructures, we can expect to develop a highly sensitive chiral molecular spectroscopy method using chiral near-field. In this study, we aim to develop a rapid method to obtain the spectrum of chiral near-field by polarization analysis and spectroscopic detection of near-field (forbidden light) converted into propagating light by a substrate bearing a nanostructure. As elemental technologies necessary for the development of this method, we have developed an optical microscope incorporating 4f optics, a high-precision polarization spectrometer, and a theoretical analysis method for chiral near-field using the conservation law of the electromagnetic chirality (Zilch).
|
Academic Significance and Societal Importance of the Research Achievements |
生体機能の発現に物質のキラリティが重要な役割を担っている。物質キラリティを検出する方法としてキラルな光である円偏光を用いた方法が広く用いられているが,キラル物質のサイズに比べて円偏光のサイズ(波長)が数100倍も大きいことに起因して,キラル物質と円偏光の相互作用は弱く,そのため検出感度が低いという問題があった。相互作用効率を向上させる方法として空間的波長が短いキラル近接場光の利用が期待されているが,非伝搬光であるためにその特性は十分に解明されていない。本研究成果はキラル近接場光の特性解明に貢献するものと期待される。
|