Manipulation of spin-optoelectronics under light-matter strong coupling state
Project/Area Number |
21K14605
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
OKADA DAICHI 国立研究開発法人理化学研究所, 創発物性科学研究センター, 特別研究員 (10880346)
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 光-物質強結合状態 / 磁気円二色性 / キラル非線形光学効果 / ポラリトン / 光共振器 / 強結合状態 / 有機無機複合ペロブスカイト / 磁気円偏光二色性 / キラル非線形光学応答 / スピン物性 / 第二次高調波発生 / ゼーマン分裂 / 強結合 / レーザー / 円偏光 / スピントロニクス |
Outline of Research at the Start |
光共振器に閉じ込められた光子が分子の持つ電子遷移と相互作用する時、光-物質強結合状態と呼ばれる光と物質の複合状態が作り出される。これは、分子の化学的修飾に匹敵する新たな量子的な材料修飾法であると考えられる。本研究では、強結合状態下で生じる電子状態の変化やポラリトン粒子特有の協奏的振る舞いがスピン関連物性に与える影響を明らかにする。過渡分光測定を用いて、強結合状態下のスピン偏極電子の生成・緩和過程を調査するとともに、円偏光レーザー、円偏光検出器、円偏光LEDなどのスピン光デバイスへの応用展開に試みる。強結合状態のスピントロニクスにおける有用性を示す。
|
Outline of Final Research Achievements |
In this study, we investigated the influence of light-matter strong coupling on spin-related physical properties of layered perovskite semiconductors , and explored how it contributes to the improvement of material characteristics. Here, the main focus of this research was the evaluation of magnetic circular dichroism and chiral nonlinear optical response. As a result, we found that the light-matter strong coupling state leads to an enhanced excitonic Zeeman splitting of layered perovskite, resulting in a significant enhancement of the magneto-circular dichroism signal. Furthermore, we revealed that it is possible to greatly modulate the dissymmetric response of second harmonic generation with respect to the polarization of the circularly polarized excitation.
|
Academic Significance and Societal Importance of the Research Achievements |
通常、物性の制御・特性向上は、物質デザインの最適化や電場や磁場などの外場印加によって行われる。しかし、本研究では、物質の組成を変えることなく、また特別な外場を必要とせず、2枚のミラーで物質を挟むだけという、非常に簡便な手法で、スピン関連物性を制御し、特性を向上させることができることを証明した。光と物質の強結合状態は、新しい量子的な物質修飾技術であり、今後さらに多くの物性の改善に活用されることが期待できる。
|
Report
(3 results)
Research Products
(5 results)