Development of photovoltaics using plasmonic compound nanoparticles with controlled dopant distribution
Project/Area Number |
21K14703
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | 半導体量子ドット / 金属ナノ粒子 / 光圧 / 光トラッピング / プラズモン共鳴 / 薄層クロマトグラフィー / イオン液体 / 金属スパッタリング / ドーパント / イオン液体/金属スパッタリング / プラズモン薄層クロマトグラフィ / プラズモン誘起電荷分離 |
Outline of Research at the Start |
近年、太陽光エネルギーの約半分を占める赤外光の有効利用が重要視されており、プラズモン共鳴を示す化合物ナノ粒子を用いた光電変換材料が注目されている。これは、酸素欠陥やドーピングする元素の量や分布に応じて、可視から赤外域の広範囲で光吸収を容易に制御できる。しかし、液相化学還元で粒子合成する場合、ドーパントが混在した状態で得られることも多く、電子移動の低下を招き、光電変換効率が低くなる課題が残されている。本研究では、化合物ナノ粒子のドーパント分布を制御した合成手法及び分離・精製を可能とする分析手法を確立し、その粒子を利用した高効率な光電変換素子の開発を目指す。
|
Outline of Final Research Achievements |
We synthesized plasmonic metal oxide nanoparticles that exhibit strong absorption in the near-infrared region by controlling the oxidation state using an ionic liquid/metal sputtering technique and heat treatment. We also found a liquid-phase synthesis method for low-toxic Bi-based semiconductor quantum dots and that the absorption wavelength can be controlled over a wide range of visible and near-infrared regions depending on the particle size and composition. We succeeded in developing near-infrared light-responsive photovoltaics by using their nanoparticles. Furthermore, we succeeded in developing a new analytical method called plasmonic thin-layer chromatography that selectively separates particles based on the optical properties of target substances by utilizing the difference in light pressure that increases depending on the intensity and wavelength of the irradiated light.
|
Academic Significance and Societal Importance of the Research Achievements |
作製したプラズモニック金属酸化物ナノ粒子および低毒性元素で構成されるBi系半導体量子ドットは太陽光中でエネルギー利用が難しかった近赤外域で光エネルギーを利用できることから、可視域で高い光エネルギー変換効率を示す材料と組み合わせることで、高効率な太陽電池への応用が期待できる。また、プラズモンTLC法では、従来のTLC法では不可能であった粒子の光学特性に応じた選択的分離を可能とするとともに、従来の光ピンセットのように高価で高出力なレーザー光(kW~MW/cm2)が必要なく、LED光などのより低い光強度(W/cm2)で物質を光捕捉できるため、簡便かつ汎用性が高く、市場価値が高い技術として期待される。
|
Report
(3 results)
Research Products
(39 results)