Project/Area Number |
21K14717
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Toyohashi University of Technology |
Principal Investigator |
Khoo Pei Loon 豊橋技術科学大学, 工学(系)研究科(研究院), 助教 (60874922)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 光活性層 / 酸化物 / 太陽電池 / 光カソード / 酸化銅 / 水溶液法 / 超低コスト / 高効率化 / エネルギー変換 / ナノ構造体 / 陽極酸化アルミニウム / 電気化学的形態制御 / ナノワイヤ酸化物 / 粒界エッチング / 形態制御 |
Outline of Research at the Start |
低コスト超高効率Si系多接合太陽電池のトップセルとしてCu2O系太陽電池が期待されている。本研究課題では、自己組織化酸化アルミニウム(Anodic Aluminium Oxide、AAO)を用いた規則フォトニックナノ構造化Cu2O/ZnO太陽電池の電気化学的形成技術を確立し、ナノ構造化による光誘導・散乱効果を活用することによって光吸収活性層を拡大し高短絡電流密度化・高効率化を達成すると共に、これらによる光電変換過程への寄与を明らかにする。
|
Outline of Final Research Achievements |
This research focused on the oxide photoactive layers for solar cells and photocathodes, specifically cuprous oxide (Cu2O), to improve photoelectric efficiency by introducing nanostructures using two approaches. First, vertical Cu2O particles were electrochemically formed, and grain boundaries were preferentially etched by anodic polarization, leading to the formation of vertically aligned Cu2O nanopillars. This increased the surface area and enhanced the photocurrent. Next, anodic aluminum oxide (AAO), capable of self-organization, was used as a template to grow the photoactive layer. This method successfully established the technology for forming ultra-fine pore diameter thin-film AAO. The results of this research contribute to the development of solar power generation and hydrogen reduction photocathodes, particularly by establishing nanostructure technology suitable for ultra-low-cost mass production using aqueous solutions.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では二つのナノ構造導入手法を開発した。自己組織化能力を持つアルミニウム酸化物(AAO)を用いたナノポア構造の形成技術により、光の吸収と変換効率を向上させた。電気化学的手法を用いて酸化銅の直立ナノピラーを形成し、陽分極による粒界のエッチングで表面積と光電流を増強した。本研究はナノテクノロジー分野での新しい材料設計と製造方法に貢献し次世代の光電変換デバイスの基盤となる。本研究は太陽光発電や水素還元光カソードの技術発展に寄与し低コストで大量生産可能な水溶液法に適したナノ構造技術を確立したことが挙げられ持続可能なエネルギー供給が可能となり、環境負荷の低減とエネルギーセキュリティの向上に貢献する。
|