Project/Area Number |
21K14724
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Tatara Ryoichi 東京理科大学, 理学部第一部応用化学科, 助教 (20876081)
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | 蓄電池 / 二次電池 / カリウムイオン電池 / 質量分析 / オペランド測定 / ガス分析 / オペランド質量分析 |
Outline of Research at the Start |
カリウムイオン電池はリチウムイオン電池に比べ希少金属や有害元素を含まない電池として期待されている。しかしながらその劣化メカニズムについてはリチウムイオン電池と異なる挙動が多く、未だ明らかとなっていない。劣化メカニズムを解明するには電池内で発生する微量分解物を知る必要があるが、このためには分解物の高感度検出が求められる。質量分析法は「プールの水に一滴分の試薬」でも検出できると言われるほどの超高感度分析手法であるが、中でも本研究では電池運転中に同時分析を行う「オペランド質量分析法」を用いてカリウムイオン電池の微量分解物を検出し、その劣化メカニズムを明らかにすることを目的とする。
|
Outline of Final Research Achievements |
Predominantly utilized lithium-ion batteries for energy storage could potentially be supplanted by potassium-ion batteries, projected to be absent of minor metals and deleterious constituents. However, the degradation mechanism of potassium-ion batteries substantially diverges from that of their lithium-ion analogs, and the precise mechanism is yet to be defined. The detection of trace amounts of decomposition derivatives generated within the battery cell is essential to elucidating this mechanism. Consequently, the goal of this study was to identify and meticulously analyze the subtle degradation by-products occurring during the charge-discharge cycles of potassium-ion batteries using "operando mass spectrometry", thus enhancing our understanding of their degradation mechanism.
|
Academic Significance and Societal Importance of the Research Achievements |
リチウムイオン電池は現在広く普及しており、低コストで資源制約のないナトリウムイオン電池の上市に向けた研究開発も各企業で進められている。カリウムイオン電池はさらに次世代の蓄電池であるが、ナトリウムイオン電池と同等の低コストで、かつナトリウムイオン電池以上のエネルギー密度が出せる可能性を有する。一方でリチウム、ナトリウム、カリウムのイオン半径の違いから、カリウムイオン電池の劣化メカニズムはリチウムイオン電池とは異なるモードで進むため不明な部分が多い。本研究でカリウムイオン電池の劣化メカニズムに迫ったことは学術・社会の両面から意義あるものであったと考えらえる。
|