Project/Area Number |
21K14758
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 38010:Plant nutrition and soil science-related
|
Research Institution | Fukushima University |
Principal Investigator |
SUGANAMI MAO 福島大学, 食農学類附属発酵醸造研究所, 特任助教 (30897492)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | イネ / 光合成 / Rubisco / Rubisco activase / フラビンタンパク質 / P700酸化 / 頑健性 |
Outline of Research at the Start |
光合成機能改良は、食糧増産に向けた重要な研究課題である。これまでに申請者は、光合成の律速要因であるRubiscoとその活性化酵素Rubisco activase (RCA)を同時に増強することで、イネの光合成速度を20%増強させることに成功した。しかしながら、このイネでは光化学系I(PSI)が不活性化しやすい弱点があることが明らかとなった。申請者の共同研究グループはヒメツリガネゴケ由来のフラビンタンパク質(FLV)をイネに導入し、PSIの頑健性を向上させている。本研究では、Rubisco・RCA同時増強イネにFLVを導入することで、光合成能力と頑健性の両立を試みる。
|
Outline of Final Research Achievements |
In this study, in order to produce rice plants with both improved photosynthetic efficiency and photosynthetic robustness, the following three proteins were simultaneously enhanced: Rubisco, the rate-limiting factor of photosynthesis responsible for CO2 assimilation; Rubisco activase (RCA), the activator of Rubisco; and Flavone protein FLV, which is responsible for removing excess electron accumulation and acts as a safety valve for photosynthesis, were simultaneously enhanced. As a result, we succeeded in producing lines with even higher CO2 fixation rates under the present atmospheric conditions of high temperatures than the single enhanced rice plants and the simultaneously enhanced Rubisco-RCA rice plants, respectively.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、これまでに我々が作出した光合成改良イネであるRubisco-RCA同時増強イネが持っていた光化学系Iの脆弱性を克服し、更なる光合成改良に成功した。このことは、学術的な価値にとどまらず、食糧増産という実用面からみても極めて重要な成果である。今後は、作製したRubisco-RCA-FLVイネがどのような環境条件下でその効果を最大化させるか、またはその効果が発揮されない条件を精査していき、更なる光合成改良のターゲットを探索する材料として活用していく予定である。
|